P\
A\
X

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL A ‘
or—— SOCIETY

Neighbourhood Manifolds and their Parametrization
P. Du Val

Phil. Trans. R. Soc. Lond. A 1962 254, 441-520
doi: 10.1098/rsta.1962.0004

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1962 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;254/1045/441&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/254/1045/441.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

[ 441 ]

NEIGHBOURHOOD MANIFOLDS AND THEIR PARAMETRIZATION

By P. Du VAL
University College London

(Communicated by J. A. Todd, F.R.S.—Received 30 January 1961—Revised 25 May 1961)
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The main purpose of this paper is the representation by algebraic varieties in projective space, of
certain aggregates, in which each element is a sequence P... P, of n+1 points consecutive on an
algebraic (or algebroid) branch. Two types of aggregate are to be considered: W, ,, of all sequences
of n+1 points with a given origin Pj in S,; and W, of all such sequences with origin anywhere
in §.. The problem has been studied by various writers from 1901 onwards, and a complete solu-
tion for n = 1,2 only was given in 1955. In this period no progress at all had been made for higher
values of n, and its intractability led to conjectures that the aggregates in question were not irre-
ducible, or had some other defects inhibiting the type of representation sought.

In the present paper a complete method is given of parametrizating both W, , and W, for
all values of 7, n, the co-ordinates of a point of the model being expressed systematically in terms of
certain invariants of an arbitrary branch through the sequence represented. These models are
irreducible and non-singular, and their points are in one-one correspondence without exception
with the sequences in the appropriate aggregates. In addition, the geometrical properties of the
models are studied in some detail for = 2 (the clarity of the picture obtained naturally fading off
as n increases) and (W, 3 having been dealt with in the author’s short contribution to a symposium
in honour of Bompiani) a complete geometrical description is given of W, ,,W; 3, and Wi,
including the base and intersection theory on these.
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442 P. Du VAL

The main importance claimed for the work is twofold: (i) it offers in theory (i.e. by a well defined
method, which however involves sharply increasing labour with increase of z and of r) a complete
solution of a problem which has proved intractable for 60 years; (ii) it gives detailed descriptions
of some, and less full description of some others, of a family of varieties which have the same type
of importance for local algebraic geometry that for instance Grassmannians have for line geometry,
etc. It is possible also that the very ample system of invariants defined in the course of the para-
metrization of the models may prove to be of use in differential geometry (the formal power
series from which they are obtained being interpreted as Taylor series) but this is a pure surmise,
being rather outside the author’s sphere of interest.

1. DEerINITIONS

Though the ideas of neighbouring points and proximate points are tolerably familiar, there
does not seem to be yet a sufficiently consistent and generally accepted terminology in use
to make it possible to begin any discussion of them without a few definitions.

We are concerned with 7-dimensional projective space S, over a ground field K, of which
the only properties that we shall assume are that it is commutative and without character-
istic. (The latter does not seem to be important most of the time, but we shall for simplicity
assume it throughout.) A point in the ordinary sense, defined by a set of co-ordinates,
whether in K or in some extension of K, will be called explicit; in contrast to this, a point
whose only existence is in some neighbourhood of an explicit point will be called implicit.
By the dilation of an explicit point P is meant the birational transformation of S, into an
r-fold V®so that Pyisreplaced by an S, _,, say SU, projective image of the star of lines through
Py, the image of any curve through P, meeting S in the point corresponding to the tangent
at P;. The implicit points of S, whose images are explicit points of S® are in the first neigh-
bourhood of Py; and points in the (n— 1)th neighbourhood of an explicit point having been
defined, any implicit point P of F’® which is in the (z—1)th neighbourhood of an explicit
point of S® is the image of a point P, in the nth neighbourhood of F;. Every such point P,
uniquely determines a sequence P,P, ... P,, of which P, alone is explicit, and P, in the first
neighbourhood of P,_; (: =1,...,n); Py, ...,P,_; we shall call the ancestors of P,, and in
particular P,_; its parent and P, its explicit ancestor. For all j < n, P, is in the (n—j)th
neighbourhood of P;; Py, P}, P,, ... can be dilated in turn, each dilation making the next point
of the sequence explicit. Any such sequence of points, in which each except the first is in
the first neighbourhood of its immediate predecessor, will be called a consecutive sequence.

If P, is any ancestor of P, P; is said to be proximate to P, if and only if when P, ..., P, are
dilated in turn so that the first neighbourhood of P, is exhibited as an explicit S,_, the image
of P; is a point (whether explicit or implicit) of this §,_,;if itis an explicit point P; is directly,
otherwise indirectly proximate to F,. The points proximate to any given one are thus all
those of its first neighbourhood directly, and certain points of its further neighbourhoods
indirectly; every implicit point is directly proximate to its parent, and may or may not be
indirectly proximate to some of its other ancestors. An implicit point that is not indirectly
proximate to any other point is called free; in two dimensions a point that is indirectly
proximate to one of its ancestors is usually called a satellite point, but in more dimensions
this expression is perhaps less appropriate; we shall use the word unfree for any implicit
point that is not free, i.e. that is proximate not only directly to its parent but indirectly to
some one or more of its remoter ancestors.


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

NEIGHBOURHOOD MANIFOLDS AND THEIR PARAMETRIZATION 443

Given any set of n points, explicit or implicit, in §,, the aggregate of points proximate to
all of them is either (i) empty, or (ii) abstractly equivalent to S,_,, including all the implicit
points of the latter; and the necessary and sufficient conditions for the second alternative
are, that the n points all belong to a consecutive sequence (so that not more than one of them
can be explicit) and that each of them is proximate (whether directly or indirectly) to all
of the others that precede it in the sequence. Itfollows that in .S, no point can be proximate
to more than r others, and that all points to which it is indirectly proximate are points to
which its parent is also proximate, directly or indirectly. It also follows that in any
consecutive sequence, the points proximate to a particular one are some one or more
immediately following it in the sequence.

Every algebroid curve branch with origin in an explicit point P, defines uniquely a
consecutive sequence P P, P, ..., of any length, of points which are on the branch; the multi-
plicity of the branch in any point P, of the sequence is the sum of its multiplicities in points
proximate to P. It follows that the number of unfree points in the sequence is finite, i.e.
all points of the sequence from a certain one onwards are free and simple. In particular, if
the branch is simple, i.e. has no multiple points, every point of the sequence is free.
We shall call a sequence free or unfree, according as all its points are free, or some
unfree.

We can specify the indirect proximity relations between the points of a consecutive
sequence by means of a type symbol consisting of the ordinal suffixes of all the points that
are indirectly proximate to each one in turn (direct proximity does not need to be specified,
as each point is directly proximate to its predecessor, and to no other). More than one that
are indirectly proximate to the same point will be contained in brackets, the point to which
they are all indirectly proximate having the suffix less by 2 than the first suffix in the bracket.
Thus (234) 3 (45) will denote a sequence in which P,P;P, are all indirectly proximate to
P,, P, is also indirectly proximate to P, and P, P; are both indirectly proximate to P,.

2. THE NEIGHBOURHOOD MANIFOLDS

We shall denote by ], the total nth neighbourhood of an explicit point P, of §,, i.e. the
totality of implicit points P, of S, that are in the nth neighbourhood of P;. This is really the
same thing as the totality of consecutive sequences P, ... P, beginning with the same explicit
point P,. W, , is the point Py itself, and I, | is a birational image of §,_,. (Throughout this
investigation, when we speak of a birational image, transformation, etc., we shall mean,
unless the contrary is stated, one without fundamental elements, so that the point to point
correspondence is one-one without exception.) If; as it seems natural to expect, it proves
possible to identify W, , with some algebraic variety, this will have to be generated by a
congruence of birational images of W, ,_;, just one member of the congruence passing
through each point of I, ,, and the congruence itself being a birational image of W] ;;
since W, , is the union of the (n—j)th neighbourhoods of all the points P, of I, , and each
of these is indistinguishable from (and in fact when the ancestors of P; are dilated becomes)
the (n—j)th neighbourhood of an explicit point. This holds for all j < 7. We shall express
this situation briefly by saying that W] ,isa fibre space of W] ,_’sover W, ,, and in particular
of S,_y’sover W, ,_,, and also of W, ,_,’sover S,_,. Still assuming that ¥, , is to be thought
of as an algebraic variety at all, it is obvious that it must be #(r—1)-dimensional.

54-2
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Similarly, we define W*, to be the union of the nth neighbourhoods of all explicit points
of §,. W}k, is S, itself, and if W%, is to be identified with some algebraic variety it must be
(in the sense in which are are using the expression) a fibre space of ¥, ,’s over §,, and also of
W, ,_;’s over WX, and in particular of S, ,’s over W%,_,. W* must thus be r-+n(r—1)-
dimensional.

The main purpose of this paper is to show how, by a consistent and unambiguous process,
we can construct a model of ¥, and also one of W}¥,, each as an irreducible non-singular
algebraic variety in a suitable projective space. These models have the following obviously
desirable invariance properties, which indicate that the geometrical properties of the
model truly represent essential properties of the aggregate represented: (i) every self
transformation of §,, regular at P, induces a self collineation on the model of I¥] ; (ii) every
self collineation in §, induces a self collineation on the model of W},; (iii) every linear
dual self transformation in S, induces a self collineation on the model of W*,—it will be
seen later that this third property is not reasonably to be looked for except for r = 2.

Our results include and extend those of other investigators, who have solved the problem
in a succession of stages for n < 2 only. The whole question seems to have been first raised
by Study (19071), as that of assigning co-ordinates to plane curve elements of the first and
second orders, i.e. to what we here call sequences Py P, and P P, P, in the plane. He pointed
out that the former can be represented by the homogeneous co-ordinates (X) of the point
Pyand (U) of the line Py P, separately homogeneous, and satisfying the bilinear invariant
relation (UX) = 0; and (by considering the net of conics through P, P, P,) that the latter can
be represented by the same six co-ordinates (X), (U), still of course satistying (UX) = 0,
but not now independently homogeneous; instead, all six can be multiplied by the same
homogeneity factor, and either triple can be multiplied by a cube root of unity, leaving the
other triple unchanged. It will be seen that (X), (U) can be identified with the tensors
u(D*) q s of our §21; and Study obtained a parametrization of Wy, which is essentially
our (22-2). Engel (1902), following up Study’s work directly, broadened the fundamental
ideas, but does not seem to have added largely to the results relevant to our present
purpose.

Gherardelli (1941) gave an exceedingly elegant study of W,*, by purely geometrical
methods, scarcely making any use of co-ordinates, and building up its base and inter-
section properties from the relation which will appear in our notation as (25-1); this he
obtained from the Pliicker relation between the order and class of a plane curve, and the
number of its cusps and inflexions; and he obtained the same model as Study did, as
projective model of the simple linear system of minimum grade.

Meanwhile Severi (1940) had generalized the problem somewhat, following up an
approach already indicated by Study, which consists of regarding a second-order element
(or sequence P P,P,) as arising by the colaescence of two first-order elements, in the same
way as we naturally regard the first-order element P, P, as arising by the coalescence of two
explicit points. This leads to the mapping of the second-order elements of the plane on
certain first-order elements of W, namely those at each point of W, whose tangents
are coplanar with the two generating lines of W3¥, through the point. This would pre-
sumably generalize to the mapping of the sequences P,...P, of S, on certain sequences
P....P, on Wk, namely, those at each point of W}, that are on a certain algebroid sheet of
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r dimensions defined at the point; but promising as this idea looks, it has not for some
reason proved helpful in the present investigation.

It was used by Semple (1954), however, in a further broad study of the whole problem,
which contained amongst other things the first substantial results for » > 2, namely a
parametrization of W} , that is, except for notation, identical with our (14-1), as well as
a detailed geometrical study of this variety. Finally, Longo (1955) gave a complete descrip-
tion of W, for all 7, constructing the loci which we call ¥,, V5 as images of the partial
flag manifolds representing point-line-plane and point-line combinations, respectively,
and generating W¥, by §,_,’s joining a point of the latter to a corresponding S, , of the
former. His model is just what is given by our (27-2) for r = 3, and its obvious generalization
for higher values of . Quite recently the base and intersection theory on Longo’s model of
W, has been studied in detail by Zobel (1960) in terms of the Schubert conditions on the
origin, tangent, and osculating plane. '

In nearly 60 years however no significant progress had been made with the problem for
n > 2. At a discussion of the whole subject in a recent seminar in London, the view was
expressed that (on account of the increasing variety of types of singular branch with
increasing n) any unexceptionally one-one model of the sequences P, ... P, (n > 3) might
well prove to have singularities, or even to be reducible; and on my expressing some con-
fidence to the contrary, I was challenged to produce a detailed description of I} ;. To this
challenge the present paper is intended as the answer; as an obvious preliminary, however,
I have made a fairly detailed study of I#; 5, which is published elsewhere (Du Val 1961),
but some of the results of which will naturally be included in their appropriate place in the
sequel.

PART L. W,

3. THE SIMPLE BRANCH IN THE PLANE

First of all then, taking affine co-ordinates (x, y) in a plane S,, with origin at a fixed point
Py, we consider a simple algebroid branch at P, with the generic point

x=alta, a4, Yy =0bt-+b 2+ by P+ ..., (31)

where ¢ is an indeterminate. If the coefficients a,, ,, ... are in the ground field this is a
particular branch; if they are themselves indeterminate it is a generic branch. We assume
in any case for the present that a,, 4, are not both zero, so that the branch is simple, and the
sequence of points PP, ... on it is free. Itis familiar that this sequence is determined as far
as P, by the coefficients a,,6,, ...,a,, b,; conversely, every simple branch through P,...P,
has a parametrization of type (3-1) reducible, by a regular transformation

t—> kit k24 ks34 (k== 0) (3-2)

to a form in which the coefficients are actually the same asin (3-1) as far as a,, b,. We are

therefore interested in functions of these coefficients which are f-invariant, i.e. which on
making the substitutions

a, —>kyay, ay,—>kia,+kyay, as—>kias+2k kyay+kya,

induced by (3-2) are merely multiplied by a power of £, say £j: the exponent s we shall
as usual call the weight of the -invariant, and by its rank we shall mean the highest ordinal
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suffix # of the coeflicients a,, by, ..., a,, b, of which it is a function, i.e. of the implicit points
Py, ..., P, on which it depends.

We have also of course to consider the invariant behaviour of these functions under a
general linear transformation on (x,y). The expressions

Dij = aibj—ajbl.

are of course (x, y)-invariants, though (for the simple branch now in question) only D, is
t-invariant. The ¢-invariants we shall obtain in the first instance turn out to be polynomials
which we shall call (a, D) forms, homogeneous (say of degree #) in 4, ... a, and also homo-
geneous (say of degree k) in Dy, ... D,,. (The degree / is defined without regard to the entry
ofay,...,a,into D,, ..., D,,, so that the form is actually of degree A% in a, ... a, and k in
by...b,.) A general linear (affine) transformation

X—pxtqy, y->rx+sy (ps—qr==0) (3-3)

induces on such a form F (= F) the transformation

h PRt
F= (ps—gr)" 2 10 Fs

where F, is the form of degrees #—¢in (a,,...,q,) and ¢in (b, ..., d,) arising from F by the

ordinary polarization process. (Note however that to avoid fractional coeflicients which
would otherwise occur we have defined F; as the coeflicient of (ps—gr)kp*~i¢, not of

(f) (ps—qr)* p"~ig', which would accord better with the usual notation for polars, and also

for tensors.) The transformation (3-3) in fact induces on F, ..., F, a linear transformation
precisely similar, except for the factor (ps—gqr)*, to that induced on the monomials
xhy x =y, Lyt B, F, will be called the tensor companions of F. Any polynomial
which is either an (a, D) form or a tensor companion of one will be called an (a, b, D) form.

4. THE BASIC /-INVARIANTS
To form t-invariants of higher rank from those of lower rank, we apply to the branch
(1-1) the standard dilating transformation
by
XD m_ Y % 41
R A (4:1)
which maps the first neighbourhood of P, on the line 0 = 0 and brings the explicit origin

PV of the transformed branch to the origin of the co-ordinate system (x),y®). The
parametric equations of the transformed branch are

A = a t4a, a3+ ..., YO =dtdyt?+d ..., (4-2)
where
a’*—l— a; a, d—l a, a, as| *ia a, a; a,
YUad by by P a0 a a, ) _Na‘l"O a, a, a;!|
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and we note that the numerators of these expressions are (a, D) forms, which can be written

aid, = Dy,
ajdy, = —ayD\y+a; Dy,
atd; = (a3 —a,as) D,y—aya, D3+ ai Dy, e (4-3)

57 __ 2 3 2 2 3
ajd, = (2a,aya5—aia,—a3) Dyy+a, (a3 —ayas) D3 —aia, Dy +ai Dy,

.....................................................................................

It is immediately obvious that if F(q, 4) is any polynomial ¢-invariant of weight s and of
rank 7, the result of substituting d,, ..., d, for 4,, ..., b,, and then putting for d,, ..., d, their
values from (4-3), is a fraction whose denominator is a power of a;, say af, and whose numer-
ator is a f-invariant polynomial of weight s+ ¢ and of rank 741, since this fraction is the
corresponding ¢-invariant of the transformed branch. This process we shall call the dilating
substitution. In particular, if F is an (a, D) form, the dilating substitution consists simply

in substituting for each D;;, A; = a;d;—a;d;; and we have at once from (4-3)

ij>
Ay = (—2aD,+a,D,)/ai,
Ay = {(a3—2a,a5) Dyy—a,a,D 3+ D, }/a3, (4-4)

..........................................................................................

Since now a =aq,, b = b,, are f-invariants of weight 1 and rank 1, H® =D = D,
being the numerator in the expression for d|, is a t-invariant of weight 3 and of rank 2.
Hence again, the numerator in the expression for A,,, namely

H® =G =—2a,D,,+a,D,;

is a ¢-invariant of weight 5 and of rank 3. Making again the dilating substitution on this

we sce that —2a,Ap,+a, Ay = HY/a} = 1/df,
where H® =1 = (5a3—2a,a;) D\, —3a,a,D,3+a} D\,
is a t-invariant of weight 7 and of rank 4; similarly
2 2 H® L
(5a3—2a,a5) Ay, —3aya, Ay +af Ay = Wk

where HO® =L = (12a,a,a;—242a,—14a3) D, + 3a,(3a3—a,as) D,3—4a}a,D,,+a} D,

is a f-invariant of weight 9 and rank 5; and so on.

It is obvious that proceeding in this way we obtain a sequence of ¢-invariants H® of rank
n and of weight 2z — 1, which are (4, D) forms, linear in D,,, ..., D,,, and of degree n—2 in
ay, .-, a,_1, such that under the dilating substitution

H® > Ho a2 (n=2,3,...)

we note also that the coeflicient of D;, in H® is a}~%, and that of each D; is divisible by
aj~2. We shall call H® the basic #-invariant of rank 7 of the branch (3-1).
We now define the parameters

o ="b/a, p,=HDai"! (n=2,3,...),
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and we remark that g, is the result of the dilating substitution on g, ;. Every free sequence
Py, ..., P, for which a, = 0, i.e. such that the line PP, is not the y axis, defines uniquely the
valuesof 4, ..., #,; conversely, every set of valuesof s, ..., 4, defines uniquely a free sequence
Py, ..., P,; thisis in fact true for » = 1, since g, is the gradient of the tangent of the branch
(3-1); and if we assume it for any value of n, we see that the values of u,, ..., 4,,, define
uniquely the sequence P{", ..., P{, on the transformed branch (4-2), so that the values of
Uys -+ Uy define uniquely the points P, ...,P ., on (3-1).

There is of course nothing particularly new about these basic #-invariants, though perhaps
something new in the point of view from which they are here approached. If we choose the
parameter ¢ (by a suitable transformation (3-2)) so that a; = 1, ¢, = 0 (for all ¢ = 2) we
see that H® = b, so that the absolute #-invariants g, 4,, ... are simply the coefficients in
the expansion of y as a power series in x; and the polynomials H® are simply the numerators
in the expressions for the successive derivatives of y with respect to x, in terms of those of
x, y with respect to ¢ (apart from some differences in the numerical coefficients, due to the
suppression of the factorial denominators in the expansions used, regarded as Taylor
series. )

If now F, F’ are any two -invariant polynomials of the same weight s, and of rank < n
the ratio F/F’ is uniquely determined by the sequence P, ...,P,, and hence is a rational
function of yy, ..., 4, If F" = a¥, since for any values of (¢, b, ..., a,,0,) in K (or any alge-
braic extension K’ of K) only provided 4, = 0, F/a® has a well-defined value in X (or in K'),
it has one for any values of 4, ..., #, in K (or in K'), so that the rational function

F/as = ¢(ﬂ13 "'n“n)

is a polynomial. This means that there is an exponent m such that a”F is a polynomial in
(a,b,H®, ..., H®). In particularif Fisan (a, D) form of degrees /, £in (a,, ...) and (D,,, ...),
this polynomial must be homogeneous of degree & in (H®, ..., H®), since these are linear in
(D, ..., Dy,), and free from b; moreover, it is easily calculated that the exponent of a in
every term must be 34+ 2k —s. Thus if F is not divisible by a, it is a form in (H®, ..., H®)
only, without a or b.

In this case the tensor companions of F are forms of the same degree £ in (H®, ..., H®)
and their tensor companions; for applying to the relation

F =y (H®,...,Hm)
the linear transformation (3-3), with ¢/p = o, ps—qr = 1, we have
F+oF,+...+0"F, = y(HO,HO -+ cHP, ..., HO+ ... 0" 2H® ) (4-5)

identically in ¢; and equating coeflicients of like powers of ¢, we obtain expressions of the
required form for F, ..., F,.

5. FURTHER PRINCIPAL {~-INVARIANTS

We now define inductively certain further f-invariants which we shall require, and which
we call the principal #-invariants, including in this term the basic ¢-invariants. a, b are
the only principal ¢-invariants of rank 1; and given all those of rank #z, those of rank -1
are the (a, D) forms arising as numerators on applying the dilating transformation to all
those of rank n, together with the tensor companions of these (a, D) forms.
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The number of these increases rather rapidly with the rank, and a complete notation for
them requires some symbols with 7 — 2 ordinal indices for those of rank 7; before introducing
this, to illustrate the general build up of the scheme, we shall find, and express as forms in
the basic #-invariants, all those of rank < 5. It is for this purpose that we have given the
alternative names D, G, I, L to H®, H®, H®, H®; and we shall use separate single letters
for all the principal ¢-invariant (a, D) forms of rank < 5, reserving a single ordinal suffix
to distinguish their tensor companions.

We note first that as a,, b, enter into H® only in the term a}~2D,,, and into H only in
the term (n—2) a7=36,D,,, aH{® — (n—2) bH® does not contain a,, b, at all, and is thus of
rank n—1. Itisin fact an (a, D) form, quadratic in (D, ..., D; ,_;), and is most simply
obtained by sutstituting 0,D,,...,D, ,_, for b,,b,,...,b, , in the expression for H{" as
an (a, b, D) form. It is thus a quadratic form in H®, ..., H®-D, and its weight shows that it
is a linear combination of the products H¢*VH®-9, for 1 <i < §(n—1). The tensor com-

panions of this (a, D) form are the similar differences iaH{" — (n—i— 1) bH{®,. Thus from
G =—2a,D,+a\ D5, Gy =—2b,D,+b, D5

we have aG,—bG = —2D?; (5-1)
similarly from ‘

1= (—2a,a5+543) D\, —3a,a,D15+a1 Dy,

I, = (—2a,b5+10ayb, —2a5b,) Dy, —3(a, by +ay,) D13+ a,6, Dy,

L, = (—2b,b3+5b3) Dy, — 36,63 D5+ b, Dyy
we have al, —2bl = —5DG, 2al,—bl, =—5DG; (5-2)
and similarly at the next stage

aL,—3bL = —6DI —3G?,
2aLl,—2bL, = —6DI,—6GG,, (5-3)

3aL,— bL, =—6DI,—3G?,
and so on.
We can now express all the principal #invariant (a, D) forms as forms in the basic

t-invariants. Thus applying the dilating substitution to (5-1), as
2
bG_2p2 -2 1 5 (9) ,

aza? ~ \a?
we see that G, — J/a’,
where J = DI-2G?
= —(2aya3+3a3) D}, +5a,a, Dy, D5+ a3(D, D)y — 2DYy) (5-4)
and its tensor companions J, =DI, —4GG1,} (5-5)
J, =DI,—2G?

are t-invariants of rank 4 and of weight 10. These satisfy, analogously to (5-2),
aJ,—2bJ = D(al, —2bI) —4G(aG, —bG)
= 3D?%G, (5-6)
2aJ,—bJ, = 3D2G,.
1.1,1, J,J,,J, are the principal #-invariants of rank 4.

55 Vor. 254. A.
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Similarly, applying the dilating substitution to (5-2) we find that
I, >Mja% I, Njas,
M = 2DL - 5Gl,
N = }(DM —5GJ) = D2L —-5DGI +5G3
are {-invariant (a, D) forms of rank 5 and of weights 12, 15; and applying it to (5-4), (55)
we find that J—>Pjat, J,—Q/al, J,—Rjal,
where P = GL—-2I2,
Q = GM —41J = 2DGL —4DI?+ 3G,
R = GN—-2J? = D?GL —2D?I2+ 3DG?* - 3G*

are f-invariant (a, D) forms of rank 5 and of weights 14, 17, 20. As L, M, N are cubic and
P, Q, R quartic in (ay, ..., a,), these with their tensor companions are 27 in number, and
are all the principal #-invariants of rank 5.

Clearly we can go on like this indefinitely. We can denote each principal #-invariant
of rank n by a symbol (j;, ..., J,_,) consisting of z—2 integers, by the rule that the basic
t-invariant H® is (0, ..., 0), the (@, D) form arising as numerator on applying the dilating
substitution to (Jy, .-+, Ju—3) 1S (J1r+++»Jn—3> 0), and the values of j,_, distinguish the tensor
companions of this; thus G, G, are (0), (1); L,I,,1,, J,J,,J, are (0,0), (0,1), (0,2), (1,0),
(1,1), (1,2);and L, ... Ly, M, ..., My, N, ...,N,;, P,...,P,,Q,...,Q, R, ..., R, are (0,0, 0),
...y (0,0,3), (0,1,0), ..., (0,1,3), (0,2,0), ..., (0,2,3), (1,0,0), ..., (1,0,4), (1,1,0), ...,
(1,1,4), (1,2,0), ..., (1,2,4); and so on. We can find the degrees and weights of these, and
the limits of the variousy;’s, by remarking that the (a, D) form (j,, ..., J,_3, 0), when expressed
as a form in the basic ¢-invariants, contains a term

Dinr-s Gin-s . (HC-2)/1H®
with some numerical coefficient whose value need not concern us; this is seen to be the case
for n < 5, from the explicit expressions we have found; and if we assume it for any value
of n, the application of the dilating substitution to (j,...,/,_3, 0) gives the result directly

for (Jy,.+» Ju3,0,0), and its application to the relations analogous to (5:6) (and similarly
obtained) which express

jn—2a(J.l’ . "’jn—-Z) - (h _jn—2+ 1) b(jl) .. ')jn-2—° 1)

as a f-invariant shows that (jy, ..., J,_9 0) has an expression containing a term

/L_JJ;’%JQD(jI,...,jn_rl,o).

We see accordingly that (ji, ..., 7,-,) is a form of degree £ in (H®, ..., H®) and their
tensor companions (the latter only if j,_, > 1), and is an (a, 5, D) form of degrees £ in
(Dygy .oy Dyy)s h—J,o1n (ay, ..., a,_1), and j,_, in (by, ..., b,_,), and of weight s, where

k=1 4] Hpmst oo s
h=n—2+j,_4+2, s+...+(@—4) ],
s=2n—1+3j,_s+5,4+...4+(2n—5) j;;
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and since the range of values of j,_, is from 0 to £,
0<y;<ttJiatZist+...+(0—2)5; (=3,..,n—2).

From this last it follows that the maximum values of (j,,...,/,,) are (1,2,4,...,2"73);
thus G,, J,, R, are (1), (1,2), (1,2,4), and so on. We notice also in passing that

s = 2h+ 3k. (5:7)

6. {-INVARIANTS OF A SINGULAR BRANCH , ,

If the branch parametrized in (3-1) is not simple a, = b, = 0, D,; = 0 for all j, and all
the invariants defined in the last two sections vanish. Nevertheless such a branch has
t-invariants of its own, expressible as (a,D) or (a,b,D) forms in the coefficients in the
expansion (3:1); and the principal t-invariants form a well-defined set in this case also,
though for a given rank we shall find they are less numerous than those of a simple branch.

Before defining these, however, we just say a word on the generic branch of a given
multiplicity type. The type of a branch is specified by the multiplicities on it of the points
Pos P, Py, ..., say m, my, m,, ..., where .

mi: z mj>
Jj=i+l

(6:1)

P.1 ..., Py, being the points of the sequence that are proximate to P;. Only a finite number
of m,m,, ... are different from unity, and we can denote the type by {m,m,, ...}, the sequence
being carried as far as the first 1 in it. In particular m is called the order of the branch. For
every unfree sequence P, ... P, there is a unique multiplicity type of minimum order for
branches passing through all the points of the sequence, obtained by putting 7, = 1, and
determining m,_;,m,_,, ... in turn from (6-1) ; and the actual multiplicity type of any branch
is that of minimum order for the sequence P, ... P, on it, provided 7 is chosen high enough
for the sequence to include all the unfree points of the branch.

A branch of order m has a parametrization (3-1) with ¢, = b, =0 (= 1,...,m—1), but
at least one of a,, b,, = 0. The tangent is

y = (bnla,)x (6-2)

and if this meets the branch in m+m’ coincident points D;; = 0 for ¢ <j < m-+m’, but
k

D,y F 0. (m' is called the class of the branch, and is equal to X m;, where P, P, ... P, are
i=1

the points of the sequence consecutive on the tangent.) Ifa,, = 0 the dilating transformation

takes the form y b
D= M =L _"m 6-3
M= Y= (6:3)
mapping as before the first neighbouyrho'od of Py on the line # = 0, and bringing the origin
P{ of the transformed branch to the origin of the new co-ordinate system. The transformed
branch has now a parametrization (4:2), in which however d,, d,, ... are given not by (4-3),
but by precisely similar expressions with all the suffixes of the a’s and D’s augmented by
m—1.
By the generic branch of a given multiplicity type we shall mean one with a para-
metrization (3:1), in which the coefficients are indeterminates, subject only to certain

55-2
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algebraic relations, which we shall call the type equations, which are necessary and suffi-
cient to ensure that the branch is of the type in question. Amongst these are

and there may be others, consisting of the vanishing of certain (@, D) forms, together of
course with all their tensor companions, since a generic branch of given type is still a generic
branch of that type after an affine transformation (3:3). If m, m, are mutually prime, or
if m =m,, my =1, (6-4) are sufficient.

To obtain these type equations, and to define the principal #-invariants of the generic
branch of any type, we first define the species. A branch, and the sequence PP, ... of points
on it, are of species ¢, if P_, is the last point of the sequence to which any other point of the
sequence is indirectly proximate. If the branch is simple, i.e. if the sequence is free, con-
taining no indirectly proximate points, both are of species 0. It is clear that when we apply
the dilating transformation (6-3) to a branch of species ¢ > 1, the transformed branch is of
species 1—1. It is also clear that there are only a finite number of proximity types of
sequence P, ..., P, of any given species, for any given #.

If then we assume that we know all the type equations for all types of branch of species
t—1, to find those of any given type of species 7z, we have only to apply the transformation
(6-3), and substitute the coefficients in the expansion (4-2), expressed as fractions whose
numerators are (a, D) forms and whose denominators are powers of a,,, for the coefficients
a;, b; in each of the type equations for the transformed branch, which are all known, since
this branch is of species i—1; and we obtain directly those of the type equations for the
given branch that consist in the vanishing of (a, D) forms; the rest are the tensor companions
of these.

We may illustrate this by finding the type equations for the generic branch of type
{2,2,2,1, ...}, which is the simplest for which (6-4) are not sufficient. (6-4) becomes in this
case a; = b, = D,3 = 0, so that for the transformed branch

D —agDyy+a,D
dl = 0, d2 - "Eé‘g, d3 — h’i_%?‘&z‘“"z’s, ...; (6'5)

and as the transformed branch is of type 2,2,1, ... these must satisfy ¢, = d; = A,; = 0
(where as before A;; = a,d;—a;d,), giving the further relation a,D,;—2a;D,, = 0 for the
given branch, and hence also of course b,D,;— 2b,D,, = 0.

We now, by a similar inductive process over the species, define the principal #-invariants
of the generic branch of any type, those for a simple branch, the only type of species 0,
having been defined already. We assume therefore that we have defined as (4, 4, D) forms a
complete set of principal #invariants of each rank 1,2, ... for every type of branch of
species 1—1; and consider a generic branch of some type of species 7. If its order is m,
a,, b,, are obviously f-invariants of weight m, and we define their rank to be unity, since they
determine, and (except for the common weight factor) are determined by the point P,.
Making now the transformation (6-3) the transformed branch is of species i —1, and by
hypothesis its principal #-invariants are all defined, and are expressed as (a,d, A) forms.
If F is any one of these, of weight s and rank 7, the dilating substitution gives

F - F*/at
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(for some integer /) where F* is a ¢-invariant (¢, D) form of the given branch, of weight
s+Hhm; and we define its rank to be n+1. Actually, the concept of the rank of a #-invariant
of a singular branch is a little artificial ; generally the #-invariants of rank # depend only on
the points P, ... P, of the sequence; but we shall notice that when P, is not a free point it may
happen that a t-invariant of rank n depends on the next free point P, , say, all those of ranks
n+1,...,n+k being then expressible as polynomials in those of rank n. (When all the
t-invariants of a given rank are polynomials in those of lower rank we shall say that there
are no proper ¢-invariants of this rank.)

We now define the principal #invariants of the generic branch of any type to be the
l-invariants a,,, b,, of rank 1, the (a, D) forms arising in this way by the dilating substitution
from all the principal #-invariants of the transformed branch, and all the tensor companions
of these latter. To avoid the needless multiplication of symbols we shall, for every type of
singular branch, denote by a’, b’ the ¢-invariants a,,, b,, of rank 1 (whatever the value of m) ;
and similarly D’ will denote D, (., the first of the D;;’s whose vanishing is not one of the
type equations; this is always the only principal #invariant of rank 2, arising from the
invariant b’ or b of the transformed branch.

We will illustrate this by finding the principal /-invariants of the first few ranks for four
types of branch, which are those that have to be considered in parametrizing W, ,:

I. Ordinary cuspidal branch, order 2, species 1, type {2,1, ...}, proximity type 2, type
equations a, = b, = 0;

dy = Dyslaj, d, = (—a3Dy3—a,D,,)|d3,
and since ¢, = 0 Ay =—ajd) = —a;Dyld} (j=2,3,...);

putting these values of d;, A,; in place of 4,, D,; in the principal #-invariants of a simple
branch we have

D’ D’ , D'G’
b'—>57§, D—?—;;‘, G"—>—D, Gl —)W, veey
where G| =—3a3D,;+2a,D,,
and its tensor companion G, = —3b3D,y3+2b,D,,

are the only proper principal #-invariants of rank 4, and there are none of rank 3.

II. Rhamphoid cuspidal branch, order 2, species 2, type {2, 2, 1, ...}, proximity type 3;
a; = by = D,y = 0; dy, d,, ... are given by (6-5) and consequently

Alj =0 (j=23,...), Agy = (—2a3Dyy+ayDy;) a3,

so that applying the dilating substitution to the principal #invariants of the (ordinary
cuspidal) transformed branch we see that while D’ = D,, is the only principal #-invariant
of rank 2, ; "

G" = —2a3Dy,+0a,Dy;, Gy =—2b3Dyy+b,Dy5

are the only proper ones of rank 3, and there are none of rank 4. We remark also that
b'G"—a’'Gj = 0.
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\

ITI. Ordinary cubic branch, order 3, species 1, type {3,1,...}, proximity type (23);

ay == by = ay = by = 0;

b->D', D=0, G—-0, G,—»—D?a’",
and while D" == D, isthe only pr1nc1pal t-invariant of rank 2 there are no proper ¢-invariants
of rank 3 or 4.

IV. Cubo-quadric branch, order 3, species, 2, type {3,2,1,...}, proximity type 2, 3;
a, = b, = a, = by = Dy, = 0; the transformed branch is cuspidal, D’ = D,; is the only
principal #invariant of rank 2, and again there are no proper #-invariants of rank 3 or 4.

We notice the increasing meagreness of the system of principal -invariants as we increase
the order and species of the branch, but we also verify that every principal #-invariant of the
transformed branch, which is of lower species, has a perfectly definite image, so to speak,
among the f-invariants of the given branch, even though this may be a function of the
invariants of lower rank. ) '

‘ 7. PARAMETRIZATION OF W, ,

To see how we can obtain a parametrization of W,,, in terms of the /-invariants now
obtained, we will begin with the trivial case n = 1. W, is a line, and is clearly parametrized
in terms of the first rank téinvariants by putting |

Xy: X, =a:b.
Thus for any particular point P, in the first neighbourhood of P), we can parametrize the
first neighbourhood of P, i.e. of the explicit point P{", by putting

XiY:dl:alzla)éza:?aD:a“; (7-1)

but a linear transformation (3-3) transforms aD into a linear combination of aD, bD, and
at into a linear combination of a*%, a’b, a’b?, ab3, b*; thus if we take homogeneous co-

ordinates in S Xo: X,:Y,:Y,:Y,:Y,:Y, = aD:bD:a*:a%b:a%b?:ab?: b* (7-2)

we see that a linear transformation (3-3) induces a collineation in S which is a self trans-
formation of the locus whose generic point is given by (7-2); this locus is evidently a ruled
quintic surface with a directrix line ¥; = 0 ( = 0, ..., 4), each generator being given by a
constant ratio b/a, and being the line with equations

X=X, Y=, (1=1,23,4), (7-3)
where A = b/a is a parameter determining the point P,. As on each generator X, ¥; are a
homogeneous co-ordinate system, we see that each generator is a model of the I}, | which is
the first neighbourhood of the corresponding P;; we shall denote this by W, ,(P;). The
whole ruled quintic surface is thus a model of I, ,.

We next parametrize the second neighbourhood of each ﬁrst neighbourhood point P,
or W, ,(P)), by applying the dilating transformation to the monomials on the right of
(7-2), obtaining in the first instance

dyA:a, Ard}:dia, diai:d a}: af
_GD G _ D\ D\ D\, D\ 5. .4
GD G D) D) D) D) s
= a’DG:a%G:aD*:a‘D3:a’D%:al'D:al3, (7-4)
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where, asin (7-1), we have not only cleared of fractions but made unity the least exponent
of a in any of the monomials on the right. Adjoining as before to these (4, D) form mono-
mials all their tensor companions, we take homogeneous co-ordinates in Sgqy as follows:
X, — as+3i-ibDI-iG
X}, = as+3i-ihDI=iG,
Y, = al*3/-ipD4~7 (j=0,..,4;1=0,...,1+3)).

(= 0,1;1=0,...,543]),
} (J ) (7:5)

Because the monomials in (7-2) are isobaric, those in (7-4) and hence all those in (7-5) are
isobaric (in fact, they are all of weight 13). Thus every free sequence Py P, P, P; has a unique
image or representative point in Sg, obtained by putting into (7-5) the values of the #in-
variants of any simple branch through it. As, however, by (5-1)

X=X ;—2Y 0 (J=0,15i=0,...,4+3) (7-6)

i+1,7-

the ambient of the algebraic variety of which (7-5) gives a generic point is not actually
Sgo but Ss6. The points of this variety for which b/a has a particular value A (whether generic,
i.e. transcendent over the ground field, or in the latter) satisfy

Ko =i
Xz"ﬂ,j = /1Xz; ‘ \
Yz’+1,j :/IYU (j=0,....,4; 1=0,...,3)

=0,1;1=0,...,4+3)), (7-7)
77

and these with (7-6) are the equations of an Sg in which Xy; (= 0,1), ¥, (=0, ..., 4) are
independent co-ordinates; but as by (7-5) Xjo: Xy, : Y91 ¥y, : ¥yy: ¥y3: Y, are proportional to
the right-hand member, and hence to the left-hand member, of (7-4), we see that the sub-
space (7-7) traces on the variety parametrized in (7-5) a ruled quintic W, ,(P,), which maps
the second neighbourhood of the point P, corresponding to the particular value of 1, in
exactly the same way as the ruled quintic W, , parametrized in (7-2) maps the second
neighbourhood of P, itself. Moreover, as a linear transformation (3-3) replaces each
t-invariant by a linear combination of itself and. its tensor companions, it induces on the
variety parametrized in (7-5) a self collineation, which interchanges among themselves
projectively the pencil [, ,(P,)| given by the values of . We notice that, though the para-
metrization of W, ,(P;) does not work directly in the case a = 0, i.e. when the tangent
P,P, is the y axis, the mapping of the second neighbourhood of P, on a ruled quintic of the
pencil is precisely similar in this case to the general case because the y axis can be trans-
formed into any other line through P, by a transformation (3-3). The algebraic variety
whose generic point is given by (7:5) is our model of W}, .

We can repeat this process indefinitely. We suppose for induction that we have obtained
a model of W, , | by equating the homogeneous co-ordinates in a space of suitably high
dimensions to certain monomials in the principal #invariants of rank < n—1, which are
all of weight m,_; and include all the monomials of degree m,_; in (a,b). Applying the
dilating transformation to these we obtain a set of monomials in the principal ¢-invariant
(a, D) forms of rank < 7, divided by various powers of a, the highest such power in any

denominator being in the monomial :
Dmn-1 /a2mn—|
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which arises from b™ -1, since b is the only principal ¢-invariant that gives rise through the
dilating transformation to one of more than twice its own weight. Multiplying throughout
by a?m-1+1 we obtain a set of monomials all of weight m,, and including aD™-! and a™,
where m, = 8m,_, 41, so that by induction from m, = 1 we have m, = }(3"—1). Adjoining
to these #-invariant (a, D) form monomials all their tensor companions, we have a new set
of isobaric monomials in all the principal #-invariants of rank < 7z; and equating these to
the homogeneous co-ordinates in space of suitably higher dimensions we obtain a generic
point of an algebraic variety which we take as our model of W, ,. Every free sequence
Py ... P, has a unique image on this variety, because the co-ordinates are isobaric. The co-
ordinates are not of course all independent but satisfy a number of linear identities (such
as (7-6) in the case n = 3) expressing the identities such as (5-1), (5-2), (5-3), (5:6). The
co-ordinate monomials which are not (&, D) forms are all expressible linearly in terms of
those which are, by means of these identities and relations analogous to (7-7) relating the
monomials which differ only in the exponents of a and b; these last relations are the equa-~
tions of a subspace tracing on W, , the locus of images of sequences for which A = b/a has
a particular value, i.e. in which P, is a particular point of the first neighbourhood of P;; this
locus we denote by W, ,_,(P,), and from the way in which the (a, D) form monomials were
obtained from the (a,d, A) form monomials belonging to the transformed branch, it is
clear that each W, ,_,(P,) maps the (n—1)th neighbourhood of the corresponding P, in
exactly the same way as the W, , , from which we started maps that of Py; [W, ,_,(P,)| is
in fact a pencil of primals on W, ,, each member of which is a projective image of the
original W, ,_,.

A word is perhaps not out of place as to why we multiply by a power of a which not only
clears of fractions but leaves unity as the least exponent of a in all the resulting monomials.
If we had merely cleared of fractions the pencil |W, ,_,(P,)| would have had a base point,
at which all the co-ordinates vanish except that equated to D!, which would be a singular
point of W, ; thus if in (7-1) we had taken the right-hand member in the form D:a3 we
should have obtained instead of the ruled quintic (7-2) the cubic cone

X:Y,:Y,:Y,:Y, =D:a%:a’b:ab?:b3.

If on the other hand we multiplied by a higher power of a, we should obtain a birational
model of W, ,, but not of minimum order; taking the right-hand member of (7:1) in the
form a”D:a™+3 for instance, we get a ruled surface of order 2m -3, with minimum directrix
curve of order m, which is the projective model of the complete linear system on the ruled
quintic coresidual to a prime section plus m—1 generators.

We can illustrate the procedure by finding rapidly the parametrization of W, ,. Applying
the dilating transformation directly to (7-5) we obtain in the first instance the monomial
fractions I

G\1-7 /D\5+3i-i

J G 1-j D 54375 ~—i .

G\4-J /D\1+%-i | . .
@) @ @ G=onizo 1),

(1=0,1;1=0,...,5+3]),
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and multiplying by a?’ and adjoining all tensor companions we obtain a set of monomials
which we can equate to co-ordinates as follows:

X, = JGI-+-IG] D5+3k-jg10-4k+3 iy, (k=0,1;1=0,1—F; )

‘Xi,jkl = J, Gl1-k-IG, D5+3k-iql0-4k+3j-ibi, j=0,...,5+3k;
Xiw = J, G1-#-IG! D5+3k-iq10-4k+3j-ipy 1=0,...,10—4k+3j),

Yijkl — IG1-*-IGY D5+3k-ig13-4k+3i-ipy, (k=0,1;1=0,1—Fk;
Yi}kl — Il Gl—k—lGllD5+3k—j313—4k+3j——ibz', J =0,...,5-F 3k; b (7'8)
ta = L,GUHIG, D3 +3k-ig3=#+3i-ib | {—0,... 13— 4k+3j),
(k=0,...4;[=0,...,4—Fk;
Zijkl — GHk-IG] D1+3k-ig17-4k+3)-ibi j=0,..,1+3k;
i=0,..,17—4k+3)).

There are 4457 of these co-ordinates, but owing to the large number of linear identities
between them the actual ambient of W, , is S 47.

8. THE UNFREE SEQUENCES

The parametrization we have obtained gives us a generic point of our model of I} ,,
and a unique image on the model for every free sequence P, ...,P,; but we have not yet
proved that an unfree sequence has a well-defined image on the model, nor that every point
of the model is the image of a unique sequence. We will deal with the first matter first.

The image of an unfree sequence certainly cannot be obtained, as that of any particular
free sequence can, by putting into the co-ordinates of the generic point the values of a;, b;
for some branch through the sequence; since every branch through an unfree sequence is
singular, and as we have seen all the ¢-invariants in terms of which the generic point is
defined are zero for the singular branch. Neither is there much hope of obtaining the
image of the unfree sequence as a limit, even if the ground field is one (such as the real or
complex number field) in which limiting processes are possible. We can of course, in such
a field, let the coefficients g;, §; in the parametrization of a branch of one type (say a simple
branch) vary continuously, and tend to limiting values for which the branch is of some more
complicated type; but it does not seem to be possible to regard the sequence on the limiting
form of the branch as being in any sense the limit of the sequence on the variable branch.
For instance, if we vary a simple branch in this way, tending to a limit in which a, = 4, = 0,
so that the limiting form of the branch is cuspidal, the ratio b,/a; may have a definite limit,
and in this case it is possible to say that the point P, on the variable branch tends to a definite
limiting position; but thisis entirely unrelated to the actual point P, on the cuspidal branch,
which depends on the limiting value of 4,/a, and not at all on that of 4, /a,.

Nevertheless, we shall now prove that every unfree sequence P, ... P, of species ¢ has a
well-defined image point on W, ,, whose co-ordinates can be expressed unambiguously in
terms of the principal #invariants of rank < 7z of any branch of species : and of minimum
order m passing through the sequence. This is true for ¢ = 0, the case of the free sequence
and the simple branch. We shall therefore assume it for all species < i—1, and for all z.

56 Vor. 254. A.
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The dilating transformation gives us a sequence P{"... P of species i—1, lying on the
transformed branch, which is likewise of species :—1, and minimum order for branches
passing through this sequence. By the inductive hypothesis, this sequence has a well-
defined image point on the appropriate member of the pencil W, ,_(P,); and this point is
the image of the given sequence on W, ,. Further, in the parametrization of W, ,_,(P)),
the image of the scquence P{V ... P has by hypothesis co-ordinates expressible in terms of
the principal f-invariants of the transformed branch, which when expressed in terms
of the coeflicients in the expansion of the given branch give directly those co-ordinates
(in the whole ambient of W, ) which are equated for the generic point to (¢, D) form
monomials, in this case also as (e, D) form monomials; and the remaining co-ordinates
are obtained from these as monomials in all the principal #invariants of the given
branch, by means of the linear identities between the co-ordinates and the equations of
the ambient of W, ,_,(P,), using of course the value A = b,,/a,, appropriate to the branch of
order m.

We may illustrate this process by finding explicitly the co-ordinate of the image points
of all the unfree sequences PP, P, on I, ,, and those of all the unfree sequences PP, P,P; on
W, 3. For n = 2 of course the problem is trivial; there is only one type of unfree sequence,
type 2, on a cuspidal branch, of species 1; in place of (7-1) we have

X,:Yy=d,:a, =D’/a’2:0 =2a":0,
so that by (7-3), with 1 = b’/a’,

XX, =ab, Y,=0 (i=0,...,4). (81)

7

The locus of images of the unfree sequences on the ruled quintic I, , is thusits directrix line.

For n = 3 we have four types of unfree sequence, 2 and (23) of species 1, on branches of
orders 2, 3, respectively, and 3 and 2,3 of species 2, again on branches of orders 2, 3,
respectively. For those of species 1 we have

Type 2:
Koo  Xo1: Y01 Yo1: Yoo Yo : Yos = d Agia, Ayyidbidia,  d?a? dad:at

2 4
:~D—,3:O:I—),§:O:0:0:O
a a

=—a’6:0:a’D"2:0:0:0:0 (8-2)
whence from (7-6) and (7-7)
X, =—a’"bi X =-—a’5"b*l (1=0,...,5);
Y,,=a'D?% Y,=bD’? (8-3)
Xy = i/1:0a Yil:Yz'ZZ ‘321/;4:0-
Type (23):
Since A, = 0 (8-2) is proportional to

0:0:1:0:0:0:0
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and again from (7-6) and (7-7)

Y,=a',Y,=Db, ‘
0 10 } (84:)

Xz‘j:Xi}ZO, Yil:Y;Q:YiS:K"}:O'
Type 3:
The least-order branch through this sequence is rhamphoid, and the transformed branch
is cuspidal; applying the dilating transformation to (8-1) we have

Koo  Xo1:Yo0: Yo1: Yo Yos: Yy = d5:0,:0:0:0:0:0
:%:a’:O:O:O:O:O
a
=a’’D’:a’8:0:0:0:0:0 (8-5)
and again from (7-6) and (7-7)
X, = a5 D', X, =a’>b"*D" (i=0,...,5),

X, =a"""b", X; = a’8-ip'itl (t=0,...,8), (8+6)
Y, =0.
Type 2,3:
Here again the transformed branch is cuspidal, but because the original branch is cubic we
have a, = 0, and (8-5) is proportional to
1:0:0:0:0:0:0,
and from (7-6) and (7-7)

X'o — a/ﬁ_ib/i, *X'ilo — q/5~ip’i+1 (Z =0,..., 5),}

(A

8-7
Xy =Xy =%, =0. (8:7)

(We recall that for the quadratic branches a’ = a,, b’ = b,, D’ = D,,, and where D,; = 0,
D’ = D,,; for the cubic branches a’ = a3, b’ = b;.)

We have now proved that every sequence P, ... P,, whether free or unfree, has a unique
image point on the model we have constructed for ¥, ,; and we are now in a position to
prove conversely that every point of this model is the image of a unique sequence P,...P,.
This we do by induction over z, asit is trivially true for the line I¥, ;. We assume it therefore
for W, ,_;. On the model of W, ,, no two members of the pencil |W; ,_,(P;)| have any point
in common, since whatever co-ordinates vanish there must always be at least two whose
ratio is different for different values of 1. By hypothesis every point of each member of the
pencil is the image of a unique sequence P{V... PV starting from the appropriate point P,
and hence of a unique sequence P, ... P, containing the first neighbourhood point P, corre-
sponding to this member of the pencil. The theorem is thus proved.

From now on we shall refer to the model simply as I}, ,.

9. REGULAR TRANSFORMATION
We now consider the effect on the branch (3-1) and its finvariants of a local trans-
formation in the plane, regular at the origin P, i.e. of a substitution
x> X(xy), y->Y(xy), (9-1)
56-2
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where X(x,y), Y(x,y) are formal power series in (#,y), without constant terms, and whose
linear forms are linearly independent, and can conveniently be taken to be the right-hand
members of (3-3). Substitution from (3-1) gives

X(x,y) = At4- 4,82+ A58+ ..,
Y(x,y) = Bjt+ B>+ B3+ ...,

where 4,, B; are polynomials in (ay, b,, ..., a; b;) and the coefficients in the forms of degree
< 7 in the series X(x,y), Y(x,y) (these latter we shall call the transforming coeflicients);

and the induced transformation on any ¢-invariant F(a,, b, ..., a,,b,) 1s of the form

F(ay,by,...;a,b,) ~F(4,B,, ..., 4, B,) (9-2)

ey Uy Uy

in which, as the regular transformation (9-1) evidently permutes with the reparametriza-
tion (3-2), the right-hand member must be a ¢-invariant isobaric with F, identically in the
transforming coefficients.

We now prove that the effect of the substitution (9-2) on all the principal #invariants of
rank < 7 is to transform each of the monomials in the parametrization of I¥, , into a linear
combination of these same monomials, i.e. the regular transformation (9-1) induces a self-
collineation on W, ,. This is certainly true for n = 1, since 4; = pa,+gb,, By = ra,+sb;;
we therefore assume it for any value of #n and prove it for n+-1.

We remark to begin with that the transformation (9-1) can be made in two stages, of
which the second is the linear transformation (3-3), and the first is of the form

x> x+X*(xy), y->y+Y*xy), (9-3)

where X*(x,y), Y*(x,y) are formal power series of order > 2, that is without constant or
linear terms. This latter transformation leaves fixed every point of the first neighbourhood
of P,, and induces in the plane in which P is dilated a transformation leaving fixed every
point of the neighbourhood line #) = 0, and regular at each such point. Thus by the in-
ductive hypothesis, applied to the parametrization of each I, ,_,(P,) separately, and using
the dilating substitution on this, all the co-ordinate monomials in the parametrization of
W, , which are (a, D) forms are replaced under (9-3) by linear combinations of themselves.
But all the co-ordinate monomials are linearly expressible in terms of these by means of
the linear identities, and the equations (linear in A, which is unaltered by this transforma-
tion) of the ambient of W, ,_,(P,). Thus the transformation induced on all the co-ordinate
monomials by (9-3) is linear, and amounts to a self-collineation of W, ,. The second (linear)
constituent of the whole transformation (9-1) is of course already known to induce a linear
transformation on the co-ordinate monomials.

It is to be noted that in the case of the image point of an unfree sequence, the use of the
dilating substitution in the above proof ensures (by an obvious induction over the species)
that the transformation (9-1) induces on the invariants of the singular branch defining the
sequence a transformation which produces just the same linear transformation on the
co-ordinate monomials as in the case of the free sequence and the simple branch.

Since any simple branch at Py can be transformed into any other by a transformation
(9-1), the group of self-collineations of I}, , is transitive on what we may call its ordinary
points, those that are images of free sequences, and determinations of the generic point.
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We can illustrate the transformations induced by (9-1) on the f-invariants of a simple
branch by giving those for the {-invariants of rank < 4

a,b— fi(a,b),
D — dD+f;(a,b),
G, G, ~> /1(G,G)) +Dfy(a,b) +/5(a, b),
LI, I, - /i(LI,L)+/,.(G, G; a,b) +Df,(a, b) +/7(a, b),

J,J,d, = f1(d,d,,d) +f1, 3(L1, 1,5 a,b) +£45(G, Gy)
+Dfi,2(G, Gy; a,b) +Df;(a, b) +£,(a, b)

and so on; where & = ps—gr, f; stands for a form of degree ¢, and f; ; for one of degrees 7, ;
in two sets of arguments, with coefficients which are polynomials in the transforming
coefficients.

10. GENERAL STRUCTURE OF W, ,

At this point we can make a few simple remarks on the general properties of W, , as a
whole. In the first place ¥, , has no singular points. We know in fact that the ruled quintic
W, , has none, and if W, ,_, has none, neither has W, ,, being generated by the pencil
|[Wy, o1(Py)| of non-singular varieties, without base points.

Each primal of the pencil [W, ,_,(P,)| is of course itself generated by a pencil |W, ,_,(P,)];
W, , has thus on it an co? algebraic system {I¥, ,_,(P,)} of projective images of W, , _,, each
corresponding to a particular second neighbourhood point P,, and mapping the (n—2)th
neighbourhood of this point, i.e. being the locus of images of sequences which have PP, P,
in common. Similarly there is an algebraic 003 system {W, ,_3(P;)} of projective images of
Wy g5 ..., an com~2 system {W, ,(P,_,)} of ruled quintics, and an co™~! system of lines
{W,,1(P,_1)}. Each of these systems generates ¥, , simply, and is compounded with each of
them that follow it in the above list.

Every point of W, , is ordinary, i.e. the image of a free sequence and a determination of
the generic point, except those of n—1 primals @,, ..., ®,, where @, is the locus of images of
sequences of type 7, in which P, is directly proximate to P,_,. Each of these primals is irre-
ducible and non-singular; and each set of 7 of them intersect properly in an irreducible,
non-singular, and non-vacuousV,_,, locus ofimages of sequences in which the corresponding
points are all indirectly proximate to their penultimate predecessors. Thus on W, ; the ruled
septimic surface @, parametrized in (8-3) and the ruled surface @, of order 15 parametrized
in (8-6) intersect in the sextic curve @, ;, parametrized in (8-7), locus of images of sequences
in which P, is indirectly proximate to P, and also Py to P,. We shall denote the intersection
of @,, ..., d,, locus of images of sequences of type ¢; ...17,, by @; .

There is also on @; a V,_, D ;, ), locus of images of sequences of type (7,i+ 1) in which
P, P, are both indirectly proximate to P,_,; on this again a ¥_;®y ;,, ;,9, and so on,
@ ... 1+ being the locus of images of sequences of type (i, ...,1-+s), in which P, ..., P, are
all indirectly proximate to P_,. @ . ;. lies in @, and does not meet ®,,, ..., D;,,, but
meets each of the remaining ®,’s in a variety of the appropriate dimensions.

It can be observed in the cases n = 2, 3 with which we have dealt in detail, and can be
proved in general by an easy induction from the way in which the parametrization is
obtained recursively, from one value of # to the next, that the equations of @, consist in the
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vanishing of all the co-ordinates except those which, with each monomial factor of rank
> 1, contain the #-invariants of rank ¢ in the highest degree. Thus @, is given by the vanishing
of all co-ordinates which do not contain the invariants of rank n, ®,_; by the vanishing of
all except those which either contain the invariants of rank z» and are linear in those of rank
n—1, or do not contain those of rank 7 and are quartic in those of rank #—1, and so on.

Each of @,, ..., @, is invariant under the whole group of self-collineations of 7, .

We can define also a primal @3, on this a V,_,®s3, on this again a V,_, @333, and so on,
where @5 is the locus of images of sequences in which P,,...,P. are collinear with P,P,.
The conditions for this collinearity are the vanishing of all the #-invariants of rank 2, ..., 1,
and the locus is obtained by putting these zero values into the generic point; in particular
O3 is the curve of order m, = 4(3"—1), parametrized by the monomials of this degree in
(a,b) only among the co-ordinates of the generic point, with all the other co-ordinates
equal to zero. These loci are not of course invariant under all the self-collineations of W},

518 in fact transformed by the collineation induced by (9-1) into an equivalent variety,
locus of images of sequences in which the points Py, ..., P, are on some curve of a fixed pencil
with a simple base point at Py, image under (9-1) of the pencil of lines through P,.

ThereisonW, ,auniqueline/, unisecant to the pencil |, ,_,(P,)|, given by the vanishing
of all the co-ordinates except the two equated to aD™=-1, bD=-1, [, is in fact the locus
D,... 5, of images of sequences in which P, ..., P, are all proximate to P,; for its intersection
with each W, ,_,(P,) is given, in the parametrization of the latter, by the vanishing of all
the co-ordinate monomials except d™-!, and this represents the sequence P{ ... PV collinear
along the neighbourhood line #) = 0.

It follows inductively from this that there are on W, , co! lines {/,}, one on each member
of the pencil |, ,_,(P,)|, unisecant to the pencil |, , ,(P,)| on W, , ,(P), and generating
the surface @ ,); c0? lines {/;}, one on each W, , ,(P,), generating the threefold ® . ,);
...; 00" 2 lines {/,_,}, which are the directrices of the ruled quintics ¥, ,(P,_,) and generate
®,; and con! lines {/,} = {W, ,(P,-,)}, generating W, , itself.

The pencil [W, ,_,(P,)| and the n—1 primals @,, ..., ®, form a base for primals on W, ,.
"This we prove by induction, as it is true for the ruled quintic ¥}, ,, on which the generators
|W,,1(P,)| and the directrix line @, are a base for curves. We therefore assume the result for
Wo n-1- On W, , the intersections (®,.W, ,_,(P))), ..., (®,. W, ,_,(P))) are a particular
Wy, u-o(P;) and the images of @,, ..., ®,_, on W, ,_,. Thus if Q is any primal on W, ,, the
intersection (Q. W, ,_,(P,)) is by hypothesis equivalent on W, ,_,(P,) to some linear com-

bination i %(®,. W, ,-1(P)); and as |[W, ,_,(P))]| is a pencil without base points or reducible
i=2 ’

members, this means that () itself is equivalent on W, , to o, W, , ,(P)) -+ «,®; which is
the theorem. =

A similar argument shows that the intersections r at a time of ®,,...,®, and W, , ,(P))
are a base for V,_’son W, ,. For r = n—1, however, a neater result is that the lines/, ..., [,
are a base for curves. This again is true for the ruled quintic I, ,, the directrix being /,
and the generators |/,|; and assuming it to be true for W, ,_,, if any curve C on W, , meets
the generic W, ,_,(P,) in f, points, C—f,/, is equivalent to some curve on W, ,_,(P,),i.e. by

hypothesis to ij fil.
i=2
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To make ideas concrete, we illustrate below the various special loci on W, 5, and the
intersections of those on W, , with a general W, 5(P,). (Figures 1 and 2.)

‘I’i,s
Ficure 1. Special loci on W, .
2(34) (34) 2(34)
(234) 234
2 2,3 3 23 2
(23) _ 23
2,34 234
34
2,4 k §,4 Q
(23)4 234
4

Ficure 2. Special loci on W, , (traces on W, 4(P))).

11. THE sPECIAL LOCI ON W,

It is possible to form some idea of the geometrical relations of the special or @ loci on
W2, »» at least of those that are not of too high dimensions, for any value of n, without actually
completing the parametrization of I, , as a whole.

Figure 1 shows the @ loci on W, 3. Dpyg), D, 5, @3 5, and Dy3 are rational curves, unisecant
to W, »(P;); and it is clear that this will be the case whenever the proximity symbol used as
suffix to the @ contains all the indices 2, ..., , since in such a sequence all the points except
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Py, P, are completely determined by these two, being either collinear with them or satellites.
Oy = [, is parametrized in (8-4), @, , is the sextic curve (8-7), @3 ;is obtained by putting
D” = 01in (8-6) and is of order 9, and @3 is obtained by putting D = G = G, = 01in (7'5),
so that its equations are o
Y,=alb (i=0,..,13)

and the vanishing of all the other co-ordinates. The ruled surfaces ®@,, ®,, ®;each have two
consecutive of these four curves as directrices, so that their ordersare 146 = 7, 649 = 15,
and 913 = 22. In the figure, each generator /, of ®;, and the generators /5 of @,, @5 that
meet it, are the directrix line and two generators of a ruled quintic of the pencil W, ,(P,).

Figure 2 shows the intersections of the ® loci on I, , with a typical W, ;(P,). We see that
the traces of O, Oy, Oy 4, O, are the images of Dyyy), Oy, @, 5, ;3 0n W, 3, since of course the
second and third implicit points in the sequence P{"... P{¥ are the images of the third and
fourth in the sequence P, ... P,. On the other hand the traces of ®,, @5 are two particular
members of the pencil W), ,(P,) on W, 4(P,), and the traces of the other ® loci, having either
2 or 2 amongst their suffixes, are just the copies on these two surfaces of the traces on
W, 4(P,) of the @ loci on W, ,. Thus the two point and line chains, copies of the chain

(23) 2,3 2,3 23
® - ® ® - @
2 3 )

on the traces of ®,, @5, are joined by the line /,, trace of Oy, to form a single chain

(234)  (23)4  2,3,4  2(34) 2(34) 2,34 23,4 o4
® ® [ ] o [ ] [} [ ] ®
(23) 2,4 2,3 (34) 2,3 2,4 23

on W, 4(P;). This means that on ¥, , we have a sequence of ruled surfaces Dy, D, 4, o, ,,
Oy, D3 3, D3 4, P33, each of which has a generator in each member of the pencil W, s(P),
and as directrix curves two consecutive members of the sequence Dz, Diozysr Dy 3,4
Dyi54y Dz P35 4> Doz 45 Pi37. The orders of these increase along the sequence from 1 to
m, = +(3*—1) = 40.

These orders can of course be found from the parametrization (7-8), when the curves
themselves have been identified in terms of the co-ordinate system there used; but it is
simpler to note that each of these seven ruled surfaces, since it only contains one independent
absolute finvariant besides that determining P;, must have a parametrization in terms of
a,,b,, D, only, where a,, b,, are the first pair g;, b, that do not both vanish, and D,,, the
first D,,; that does not vanish, for the corresponding singular branch. Considerations of
weight show that the parametrization of the ruled surface must be of the form

h . . h o 8tk - he+k
GEDL i 1bE D :gtk; | eV

where k/h = (m-+m’) /m. Thus the difference in order between the two directrix curves is £.
Further, it can be seen that k, & are mutually prime, so that £ = (m-+m’)/(m,m’), where
(m,m’) denotes the highest common factor of m, m’. For if m, m" have a common factor, the
ruled surface in question is a birational image of that on W, ,. (for a suitable n" < n) repre-
senting the shorter and simpler sequences obtained by omitting all points after the one
free point (since these sequences are in one-one correspondence with those of the type in
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question) ; and for the typical branch through this shorter sequence, m, m” are proportional
to their values here, but are mutually prime.

In table 1 each entry in the first column gives the proximity type symbol corresponding
to one of the ruled @ surfaces on W, ,; in the second column are the multiplicities of P, ... P,
on a typical branch through the sequence; in the third, the values of m (the multiplicity of
P;) and m’ (the sum of the multiplicities of points of the sequence on the line P,P;; in the
fourth that of £ = (m-+m')/(m,m’); in the fifth and sixth, the type symbol of the sequence
corresponding to a @ curve on W, ,, and the order of this curve; and in the last column the
order of the ruled @ surface. The entries in the last two columns are obtained from the fact
that each entry in the fourth column is the difference, and each in the last the sum, of
consecutive entries in the sixth column (and of course that /; is a line, which fixes the first
entry in the sixth column). As a check on the method we note that ®s3; is a curve of order
m, = 40, as we expect.

TaBLE 1
2
(23) 3,1,1,1,1 3, 4 7 E%LZL ; 9
9.4 42211 4,6 5 S s 21
23 39 11,1 3, 5 8 23 o 34
(34) 3.3 11,1 3,6 3 2050, o 45
2,3 2.9 11,1 2.5 7 o o 55
2 4 2,22 1,1 2, 6 4 S o 66
3 L1111 1,4 5 o . 75

The only @ surface on W, , that is not ruled is ®; ,; this is a birational image of W, ,,
on which the directrix line appears as the 13-ic curve @, ; ,, and the generators as the sextic
curves traced by |W; 5(P))|.

N 3(45)
fie) = N w () N w
3 2 3 S 3 & = B
\( N <« Q ‘ 1 16 c'i
245) (345) 7(45) F
3 - 2,4 « 5 (34) - « 2.4 « y
R e e = oL - 3 IS5 — Icog
= @) ¢ 2,3 =g ! 73
(235 235 235 23,5
w 24,5 A (345~ 245 A 0
3 X ;A 3 3 = N 3
< 8 2‘ 51 1 ) |g N
34,5

Ficure 3. Special loci on W, 5 (traces on W, ,(P,)).

This method of deriving the chain of @ curves and ruled ® surfaces on I}, , from that on
W, ,, by taking two copies of the chain of traces on I, ,(P,) and linking their ends together
by the line /, to give the chain on W, 3(P)), can equally be used to obtain the chain on I¥; ,
from that on I}, ,_,. Figure 3 is obtained in this way from a simplified version of figure 2,
and figure 4 from figure 3.

57 Vor. 254. A.
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Two copies of the point and line chain for W, , | are placed side by side, each of the
indices in all the proximity symbols being increased by unity, with 2 prefixed to all the
symbolsin one copy and 2 to all those in the other; where 21is prefixed to 3, 34, ..., it becomes
(23), (234), .... The end-points 2(3...7), 2(3...n) of the two chains are then linked by a
new line /,, trace of the ruled surface @,__,). There are thus 21 @ curves, and 2"-1—1 ruled
® surfaces, with a generator in each W, ,_(P,). The orders of these can be found by the

method used above for I, ,; in the case of W, 5 they are

10, 17, 29, 34, 47, 55, 66, 69, 79, 86, 97, 101, 110, 115, 121

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L,
11, 27, 46, 63, 81, 102, 121, 135, 148, 165, 183, 198, 211, 225, 236
(the curves in the upper row and ruled surfaces in the lower, proceeding along the chain
from @yp35) t0 Dyggs).
3(456)
34(56)
24(56) , 24(56)
(349)(56)
— = ~—r - -~ — ~ . -
g€ 8 & 8 I/\Y g & & &\ g g \@ B I3
= = — L ]
(23)(56) 2(456) 2,3(56) (3456) 2,3(56) 2(456) 23(56)
(235 2(45) 2,35 (345) 235 2(45) 235
5 —_ w —_ — w n Y w
W v = 9 < 20 b B = v = { < W w
=z < = I > < = - 1 5 3
g & 3 37 3 & g & g & 3 o8 &8 B B
(234) (23)4 2,34 2(34) 2(34) 2,3,4 234 234
(234)6 (294,6 2,34,6 2(34)6 2(34)6 2,3,4,6 23,4,6 2346
2 A2 2 R\ 2U45)0 MAN23 /< 2\BBYL AN\23 Jeo o\ 2(45)/ A28/ &
2 OFex\ S 2\ /92 Fe 2 /Ei/u\/2% 2 [9unspE
N Q w @ & s\ & < s > & > 1 o3 ’23
=~ = a & oF o = ! AT o\ red o les
24,56 24,56

3(45)6
Ficure 4. Special loci on W, ¢ (traces on W, 5 (P,)).

There are also non-ruled @ surfaces tracing curves instead of lines on W, , ;(P;). Besides
the two copies of each such curve in the previous figure, there are also the images of those of
the @ curves of I, ,_, which have 2, not 2, in their symbol; these have all the indices
increased by unity without 2 or 2 being added. Thus in figure 3, the curve traces of @y,
@, 4 5, Dyys), are the images of the curves Dy 4, Dy 5 4, Doz 0N W .


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

0
'am \

SOCIETY

OF

/| \

SOCIETY

OF

Downloaded from rsta.royalsocietypublishing.org

NEIGHBOURHOOD MANIFOLDS AND THEIR PARAMETRIZATION 467

We can also identify in the diagram a number of surfaces which are the traces of threefold
® loci. We note that every alternate (odd numbered) line in the chain is an /,, every alter-
nate one of the remainder is an /,_,, and so on, the middle line of all being an /,. Every two
consecutive /’s are two generators, and the line between them in the chain is directrix
line, of such a ruled surface trace of a threefold ® locus (if the diagrams are drawn in the
‘battlement’ pattern used here, these are the open rectangles of the pattern, and their
symbols are written inside them in figures 3 and 4). The ruled surfaces whose directrix
lines are /,_, are ruled quintics of the system W, ,(P,_,); of the rest, those whose directrix
lines are /,_; are of order 2i - 3, being images of the ruled surface @,y on W, ;.. There are
also the images of those @ surfaces on I#; ,_, which have 2, not 2, in their symbols, and
of course the copies of surfaces similarly arising in the previous diagrams. In figure 3, we
detect the following surfaces, ruled except for the fourth, which is a birational image of
W, 5; in table 2 the second column gives the symbol of the minimum directrix curve, the
third (where applicable) that of a second directrix curve, and the last two of two generators
(or images of generators).

TABLE 2
Dy (34)5 3,4,5 2,3,5 2,3,5
o, , 3,4,5 3(45) 2,3,4 2,3, 4
Dz 3(45) — 2(45) 2(45)
s 3,4,5 — 2.4 5 2.4,5
os 2,4,5 — 2,3,5 (23)5
s 2,4,5 — 2,3,5 23,5

A similar study of the ® loci on W, ¢, assisted by figure 4, is left as an exercise for the
reader.

Traces of @ loci of higher dimensions can also be picked out in the figures, but of course
much less clearly.

12. BASE AND INTERSECTION THEORY ON W, ,
In a paper dealing in detail with W, 3 (Du Val 1961) I have shown that on this
(denoting the prime sections by |II|, and abbreviating W, ,(P,) to W)
I1=13W+40,+d,, II.1I = 5,4 22[,+ 811,

so that the order of ¥, 5 is 108; the intersection table is

w 0 ly l

D, Iy ~3l, I+ 5l ,
@, L, L+ 5l — 31, —4l,— 151,
L 1 -3 0

l, 0 1 -3

A 0 0 1

and the remaining @ loci satisfy the equivalences
O = BW+ @y, Dy =1y, ®, 3 =1,+51,,
Oy 5= 1,8l +5l;, D= 1,+3l,+9L.
It is perhaps worth setting down here briefly the corresponding theory for W} ,, as this
illustrates the way in which the properties of I, , can be obtained from those of W, ,_,.

57-2
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A base for primals on W, , consists of w = W, 4(P,), @,, O3, O,, and one for curves of
ly5 1y, L5, 1,5 one for surfaces would consist of the intersections of these by pairs, but we shall
replace @, 5, ®; 4 by Py, gy, which are of lower order, and enable us to express all the
surfaces in which we are interested without negative coeflicients. We shall denote the
traces of @, Oy, ®, on w by U, V, W =W, ,(P,).

As the line system {/,} is mapped one-one on I, 3, every subvariety of ¥, ; has an image
in {/,}, the variety (of one more dimension) generated by the corresponding subsystem of
{{,}. It has also an image on ®,, which is a birational image of I¥}, ;, being unisecant to {/},
and of course an image on each w. These images are tabulated below:

Wy, 4t w D, D, A A A D, 5
A w 0, D, D y3) |4 w 2,3
D,: U D,,, D, , Dy k A D, 5,4
w: w |4 U A ls Uy k

where £ denotes the sextic curve secn in figure 2 as the trace of @; , on w. The images of
O3, @5 5, Oy in {/,} are the similarly named condition loci on W, ,, and their images on @,
are the same with an additional suffix 4 in each case; those on w are without geometrical
significance for W, ,. Equivalences on W, ; hold also between the images in all three
systems, and the image in {/,} of an intersection on W, ; is the corresponding intersection
on W, ,.
Since the difference between two directrix curves of a ruled surface is a multiple of the

generator, we obtain at once the following equivalences for curves

(D(234) = lla (D(23)4 = ll ‘|‘7l4: (D2,3,4 = ll ‘|‘513‘|‘7l4>

Doy = {,+5l3+150, Doy = [, +3l,+ 513+ 151,

Dgz3 = [+ 31,4+ 9,+ 271, k=1,+5,.

Similarly the prime sections of U, V, W, and the ® surfaces are immediately found to be

U: 1,491,451, V:I1,+6l,, W:Il,+4l,
Doyt 1, +8l, Oy 42 1 +183l471, Dy 52 1+ 513+ 28,,
q)g’ 4- ll —+ 312—|— 4013—|— 22[4, q)§§2 ll -+ 3[2 -+ 9l3+ 62[4,
@, 40 60, ;5 4431k = 61, -+ 311,301,197,
the last being obtained from the fact that @, , is a birational image of the ruled quintic
W, o with @, 5 ,, k representing the directrix and generator; its order is accordingly 264.
From equivalences in {/,} we obtain
(I)z, 3 = bW+ Dy, q)ﬁ, 3= 3V -+ 5W+ Dy, Qg5 = 3V-+9W+ Dy,

and on @, O; , = 3U+D, .

Now as @, is generated by lines /, meeting ®, ,, the residual section by a prime through

®, ,is ruled in {/,}, and from equivalence and intersection relations in this subsystem of
{l4}, as mapped on @, ,, we find (denoting the prime sections of W, , by |II|) that

II. CDZ =21 W4 4@(23) —+ @2’ 4-
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470 P. Du VAL
Similarly, as @, is generated by lines /, meeting @y and @y 4,
II. (D3 = 31V + 6(5W+ (D(zs)) + (D(34)
= 24V 4+ 5W+ Doy + Dy,

whence incidentally Oy 4 = TW+5(5W+ D)) + Dz

And from the equivalence and intersection relations on ®, asimage of W, s, since the images
of ;, l,, I, are of orders 9, 6, 1,

I1.®, = 36U+ 9, ,+, ,.

Finally, as the residual section of W, , by a prime through @, is compounded with {/,} and
has 1, 1, and 4 generators in common with @, V, and W, respectively, we see that

IT = 40w + 130, + 4D, + D, (12-1)

The intersection table (Table 38) is now easily constructed. Most of the intersections are
obvious, except those of a ® locus with something lying on it, and these are found from the
linear identity between the five columns of the main table which expresses the relation
(12-1). The orders of the various loci, entered in the last column, are obtained recursively by
adding, for each, the orders of the components of its prime section.

It is obvious that we could go on, using these results, to study the geometry of I, 5,
W, g, ... in turn, if it were worth the trouble, which obviously increases very rapidly with 2.
A few results clearly generalize: it is not hard to prove inductively for instance that the
prime sections of W, , are equivalent to

B3 =1 W (P)+ 3 331 1) @,

i=2

that 05— = 31,
i=1

il

and that the intersection matrix of primals with lines in the base has 1 everywhere in the
diagonal, bordered by —3 above, and 0 everywhere else. But much in the way of further
information looks as though it would be very laborious, though quite straightforward,
to find.

PART II. W, (r=3); IN PARTICULAR W,

13. INVARIANTS OF A BRANCH IN SPACE
If we now consider a branch in S5, with generic point
x = ayt+a,2+azt+ ...,
Y= byt tby 2 b3+ ..., (13:1)
z = ¢ b+ cyt>+egtP+ ...,
where of course (,4,z) are an affine co-ordinate system in S; with origin at the origin P,

of the branch, and seck for its #-invariants, we have first of all those already found for the
plane branch (3:1), with the adjunction of further tensor companions, since the affine
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transformation (3-3) is now to be replaced by a general linear transformation on (x,y, z).
Thus D;; = a;b; —a;b, may be denoted by D, and we similarly define

D Gj) = bicj“‘bjcia Dy(ij) = 0,4;—C; ;5

so that D,= Dy Dy=Dyp D.=D,y
are t-invariants of rank 2, and the components of a covariant vector.

As we have already so many numerical suffixes to take into account, we shall use x, y, z
as the co-ordinate indices of tensors, rather than 0, 1, 2 or 1, 2, 3; indeterminate tensor
indices will be denoted by Greek letters a, f, ...; and in order to apply this notation to the
coeflicients in (13-1) we shall write p*, p¥, p? for a, b, ¢ where convenient, with the numerical
suffixes unaltered (and still denoted by ¢, j, ... when indeterminate.)

With this notation we see that all the #invariant (4, D) forms of part I become com-
ponents of tensors, in which all the covariant indices are z and all the contravariant
indices x; what we have hitherto called the tensor companions of these are merely those
other components in which some or all of the contravariant indices are y instead of x. All
components will now be #-invariants. Thus G, G, are the components G, G4 of a i~invariant

tensor Gﬁ = —Qﬁ%Dﬁ(lz)‘l‘ﬁofDﬂ(ls)
with nine components altogether.
This process of merely adjoining further tensor components to those we already have

does not, however, give us all those we require; in particular, there are some which vanish
for every branch which lies in a plane, and which contain the determinants

Ez‘jk= bi bj bk

We define the principal #invariants of the branch (14-1) in exactly the same way as
those of the plane branch, using the dilating transformation

) = x = at+a,0%+ a3+ ...,
y = y_bi_ dit+dy?+dy 3+ ...,

x a; (13-2)

zZ0 = 3—%‘1— =¢,t+ ez_tz-l:— et + ...
and the dilating substitution of d; for 4, and ¢, for ¢;; where d,, d,, ... are given by (4:3) with
D ;) now written for D;, and ¢, e,, ... by similar expressions with — D, in place of D).
We define also
Ax(ij) = diej"—djez‘: Ay(ij) = 6;4;—¢6;4; Az(ij) = aidj—ajdi,

and it is clear that A, A, are given by (4-4), with D, D,, respectively, in place of

each D, ; as, however
1> €5 ’ Dy(li)Dz(lj)“Dz(u) Dy(lj) = alElijs

we have Aqp = Eyys/ad,
Ay = (—axE p3+a, E}yy) [at,
Avio = {(a5—a,a3) By — a1y E 5y + a1 E 5},

.......................................................
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Now taking p* = p¢ (i.e. a = a,, b = b,, ¢ = ¢;) as the principal ¢-invariants of rank 1,
and supposing those of rank n—1 to have been defined, we define those of rank 7 to be all
components of all tensors of which any component arises as numerator on applying the
dilating substitution to those of rank n—1. Thus as

by = Dyyplai, ¢~ “Dy(lz)/a%a
the three componentsof D, = D ., are the only principal #-invariantsofrank 2. Similarly as

E E Gx G*
123 z
Dx‘%“*sl‘“——%', D _/'** DZ%——Q—,

we see that E = E|,; and the nine components of G4 are the only principal -invariants of
rank 3. These satisfy of course a number of identities. In the first place, as

pi alif) = ﬁ] alif) = 05
we have pD, = G = p*G4 = D,G’ = 0; (13-3)

and further, if ¢, ;. , ¢/7 are the usual alternating tensors (equal to 1 or —1 if ¢ffy is an even
or odd permutation of xyz, and to 0 otherwise)

€upyP*GE = —2D, Dy, 7D, G4 =pp’E

of which the first, with y = 0 = z, is (5-1).
Turning to the ¢t-invariants of rank 4, we find that

(13-4, 5)

N P
G’ - ‘—2“ . G7 é—‘
Jxx Jxx Jxx _ Jxxﬂ
Gy - & y’ Gj _ Yy y Gg - Zéé’ G§ — yw’
Yy a5’ a5 a ad

where
128 = (—ps i+ 5p3 02 — p30f) Doy —3( 0505 +050%) Dy + 0108 Dyrar
Joby = — (p3 14+ 3p508 +057) Dy Do
+%(ﬁ‘fﬁg JF/)%M}) (4D'y(12)D3(13) +Dy(ls)Da(m))“I‘p%pf(Dy(M)Da(m)— QD'y(IS)Do‘(lIi))
= D12 - G2G4 - G§ G4

are the full tensor forms of our former I, J; but also

G"—>—S—;, GJ—>1§, G§->—T6l, E»yg,
a a a
where S = —3p8 E\p3+ 0§ Ergas

TZ" - (/’% D/;(lz)"Qﬁ‘i‘Dﬂ(ls)) E123 +1b%D/i(123)E124:
U“ﬁ:( pﬂ‘l‘ﬁ Pﬁ+ﬁ3[)ﬁ) 1237 (paﬁ'g“hb l’ﬂ) 124+p1pﬂE134

are t-invariant tensors of weights 8, 11, and 10, respectively. We note that those with two
contravariant indices are symmetric, but J24; is not symmetrical in y, 4. (We shall insert a
comma between indices to denote unsymmetry.) Thus 124, J2#,, S*, T4, U* have respec-
tively 18, 54, 3, 9, and 6 components, and these 90 are all the principal -invariants of rank 4.
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It is clear that just as the ratio a:b determines the tangent P, P, of the plane branch, so
the ratios a:b:c determine that of the branch in §;; similarly the ratios D,:D,:D, deter-
mine the osculating plane P,P, P,, and D, = 0 is the condition for the branch to beinflected,
i.e. for P P, P, to be collinear. E = 01is the condition for P, P, P, P, to be coplanar; similarly the
vanishing of all the ¢-invariants of rank < 7 containing the determinants £, is the condition
for P,...P, to be coplanar, and the vanishing of all such -invariants of all ranks is the
condition for the whole branch to lie in a plane.

The extension of this theory to any number of dimensions is obvious. The principal
t-invariants are defined by means of the standard dilating transformation in which all the
co-ordinates except x are divided by x, and the origin moved to that of the transformed
branch. What appear in §; as covariant tensors will in general have antisymmetric pairs of
contravariant indices, or of course antisymmetric sets of r—2 covariant indices; thus the

D;; of the plane branch and D, ; of that in §; appear in S, in either of the equivalent forms

Dy = prp —050%  Dopip) = Capysb¥h] s
similarly the determinants £,;, appear in S, as the covariant tensors

ij
Eoc(ijk) = Eacﬁ'ysp/,?p}'p?c)

and we have a new series of determinants
Fz‘jkl = 6aﬂy8p%p]/? J294 8

the components of E, = E,(,,5 are the co-ordinates of the ‘osculating’ S, PP, P,P,, and the

vanishing of all of them is the condition for P P, P,P; to be coplanar; similarly F = F,;, = 0
is the condition for P P, P,P;P, to be in an ;.
And so on.

14. PARAMETRIZATION OF W;

We can now proceed to the parametrization of W, , in exactly the same way as for I, .
It is obvious in the first place that the plane W} ; has in it the natural co-ordinate system

X:Y:Z=a:b:c;
thus applying the dilating substitution we see that each plane W; ;(P) on W} , can be
parametrized by the monomials
a,:dy:e, = a*:aD,:—aD,,
and adjoining all components of these tensors we obtain the monomials
X5 = pDF, Yo = peplprp? (14-1)

which, allowing for differences of notation, is precisely Semple’s parametrization of W ,.

These co-ordinates satisfy Xz —0 (14-2)
but are otherwise independent. If we take the direction coefficients of the line P, P, (tangent
to the branch) to be L:liu—azb:c
the co-ordinates Xi: Xz Yo = —e¢,:d)1ay

58 Vor. 254. A.
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are independent (and serve as a co-ordinate system) in the generic W; (P,), and the rest

are all determined from them by (14-2) and
X4 = AX; X3 = uXs,
A F=H (14-3)
Y “ﬁW = AYobre,  Yobvz = yYobre,

which are accordingly the equations of the plane W; (P,).
Turning now to the parametrization of ; ;, and applying the dilating substitution to
(14-1), we have for the nine co-ordinate X§

E G* G*
a; A = a2’ al‘/-\y(lz) = _aﬂ, AN ”55,
D E D . G* D.G*
dl Ax(l2) = ;5 ) dl Ay(l2) = ;4 4, d A (12) = a4 2, 0 (14'4)
DE D,G D G
1819 = — ;5 » 6 Dgy=— ;4 Z, By =— ;4 2,)
and for the fifteen co-ordinates Y479
di — =W pipe-i (i-0,1,2,3,4
1 a= a8 y -z (Z S Rt Rt ) )3
d3=ig — (_1)iDz‘D3—i 1 =0,1,2,3)
iy 6 = g5 Pylz (1=10,1,2,3), | (14-5)

adi-ie — (=) 'azl) DiDz (i=0,1,2),

3 — 3, — 4 __ 4

Multiplying throughout by a? and adjoining all components of each #invariant tensor, we
obtain the following set of monomials:

Xgyowh =pa .. p»D, G,

Xgl...ag,ﬂ —_ potl . pwng,
Y;u...oq —_— pou s pDMD E’
Yocl...ow — pOLl V. poﬂE

%‘1 ~p “—p D,Bl Dﬂﬁ [ (14.6)
Zglﬂ;;s = p L. p 4D,81Dﬂ2Dﬁ3,

Zgpe =p...pDy Dy,
Z%n---ono = p*... pocmDﬂ’
2010013 p“l poc13.

These 1569 expressions we take as homogeneous co-ordinates in |54, defining the generic
point of an algebraic variety, which is our model of W; ;. The proof that this is in fact a
proper model of W} ;is typical of the similar prooffor W] ,, and just sufficiently complicated
to contain all the points that need to be taken account of in the general case; we shall
therefore give it in full, rather than struggle with the more complicated notation and longer
explanations that would be necessary to a precise formulation of the proof in the general
case.
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The 1569 monomials (14+6) satisfy of course a lot of linear identities: first, by (13-3), all
the three term relations obtained by contracting any covariant with any contravariant.
index, namely

X$’1;§~065»’y — X;C:;§~065»8 — X;C’l;s;wu')/,ﬂ . X)O’L:gdq&ﬂ — 0,

Xyromd = Kgread = 0, Ygneass? =0, (147)
LY popy = LR GET = LF oY = L2297 = (.

Also by (13-4) we have
e KB = ZREGs  pyeXp Tt = Zhe (14-8)
in which (7-6) are included; and by (13:5)
6‘“776X§,"'8"a5'a6 — Yor.asasar, (14.9)

There are 705 of these identities, reducing the ambient space of W} ; to Sg.

The monomials that are proportional to (14-4,5) are those co-ordinates in which all
the contravariant indices are x and all the covariant y or z, namely (in the same order as
in (14+4, 5))

Y+, Xz, X2,

Yfg‘: Xf,;, Xﬁ o (14'10)
=Y X X
and (—1)Ztu: (i=0,1,2,3,4),
(—l)i zzza—i (l: 0,1,2, 3),
(_1)iZz7izZ‘i (i:O:l,Q)a (14.11)
Zzlo, wz;;lo, wa,

where we have abbreviated to #/, ', or z! a row of 7 indices all equal to x, y, or z. The re-
maining co-ordinates are all determined linearlyin termsof these by the identities (14-7, 8, 9)
and the following equations of the ambient of W; ,(P,), in which 1:1:x are as before the
direction coeflicients of the tangent P P, corresponding to the P, in question:
X5y — N X, )
Xg“‘i*f yizi,f — AiﬂngB’ﬂ,
Y;;:—z—JylzJ — /V/lef;’,
Yx7—i—j yizj - /Vﬂ]Y’ﬂ;

ZY g = AL g L3 5= ML g (14-12)
Zhpit™ = N Z, o
Zgas = W Z,,
ZA'gO—i_jyizj — /Iiﬂjz'%m,
Zx13—-i—jyizj — /Iiﬂijls. J

In fact, given the co-ordinates (14-10,11), (14-12) determines those in which any of the
contravariant indices «; in (14-6) are y or z, (14-8) then determines those X’s in which the
index £ is y or z, and finally (14-7) determines those in which any covariant index is x.

58-2
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(14-10,11) are all independent except that the sum of the three diagonal elementsin (14-10)
is zero; this is included in (14-9), and (14-4) shows that it arises by the dilating substitution
from (14-2). Thus (14-12) are the equations of a subspace S, in Sg44; of the c0? such sub-
spaces given by all possible values of A, #, no two have a point in common, since every point
has at least three non-zero co-ordinates proportional to 1:4: .

Now it is clear that, the monomials (14-6) being isobaric (of weight 13), every free
sequence P, P, P,P, determines a unique point of g, lying on the algebraic variety of which
(14-6) is the parametrization, i.e. gives the co-ordinates of a generic point. As moreover
the co-ordinates are all tensors, any linear transformation on (#, y, z) induces a self-collinea-
tion of the variety. Each of the subspaces (14:12) cuts this variety in a subvariety which,
as (14-4,5) were obtained from (14-1) by the dilating substitution, is a proper W; ,(P,),
i.e. a projective image of W} ,, on which the sequences P{’P{P P arising by dilation and
having a common origin P{ are mapped exactly as the sequences P,P, P, are mapped on
W; o itself. This argument does not apply directly of course when P, is in the plane x = 0,
i.e. when the tangent to the branch lies in this plane; but the invariance under affine
transformation shows that the W} ,(P;) corresponding to such a P, is exactly like any other.

Every point of the variety lies in one and only one W; ,(P,). Given therefore that our (i.e.
Semple’s) model of W} , provides a one-one mapping of all sequences PP, P, with the given
origin P, including the unfree sequences, which for » = 2 are only those of type 2, the
variety we have constructed provides a one-one mapping of all sequences P,P, P,P, with
origin Py, including the unfree sequences, since each of these gives rise on dilation to a
sequence P{PPYL P which is either free or of type 2, and has a well-defined image point on
W; o(P). (The actual parametrization of the unfree sequences will be dealt with in the
next section.)

It is now clear that we can construct the model of W; , recursively, exactly like that of
W, .- Having obtained a parametrization of W; ,_;, we apply the dilating substitution to
all the #-invariant monomials entering into it; multiplication by a3"™ clearsof fractions, and
gives a set of {-invariant monomials, isobaric of weight m, = 1(3"—1), in which the least
exponent of a is unity; these are some components of certain tensors, those components
namely in which every contravariant index is x and every covariant index y or z. Adjunction
of the remaining components of these tensors completes the set of monomials which provide
the parametrization of W} ,, generated by co? projective images {W; ,_,(P,)} of the model
of W; ,_, from which we started, and with the property that every affine self-transformation
of §; with P, as fixed point induces a self-collineation on I#; . Indeed, not only these affine
transformations, but every self-transformation of S; with P, fixed and regular there induces
a self-collineation on W, , ; the proof is almost word for word the same as in §9, and need
not be repeated.

15. PARAMETRIZATION OF THE ® Loc1 oN W; o, W 4

The parametrization of W; , we have obtained gives us of course a generic point, whose
determinations are all the ordinary points of the variety, images of free sequences; and on
these the group of self-collineations is transitive, exactly asin the case of W, ,. Asin that case
also, the images of the unfree sequences are not determinations of the generic point we have
obtained, and are not obtainable by allowing the coefficients in the expansion of the
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generic branch to tend to limits giving a singular branch; but must be obtained recursively
from the mapping of sequences of lower species on W; ,_,(P,).

We shall, as in §8, illustrate this by finding the image points on W} ,, W ; of all the
unfree sequences PP, P,, P P, P,P;. Of the former there is only type 2; of the latter, as well
as the four types 2, 3, (23), and 2,3, considered for r = 2, we have also a type (23) 3, in which
P, is indirectly proximate to P, and P, to both Py, P;; and we have also to distinguish in the
case (23) between the general case, and that in which P,P,P; (all proximate to P,) are
collinear; this we shall denote by (23). The distinction is significant, i.e. invariant under
regular transformation, since this induces a linear transformation in the neighbourhood
of Py; the sequence of type (23) lies in a plane, and on every surface passing simply through
P, and touching this plane, whereas the general sequence of type (23) lies on no surface
simple at Py; a cubic branch through the general sequence of type (23) is canonical in the
sense defined by Cahit Arf, whereas one through a sequence of type (23) is not.

To avoid needless multiplication of diacritics, we shall, for each of the singular branches
in question, denote by p’* (or a’, b’, ¢’) the first triad g;, ;, ¢; which are not all zero (these
are in each case the direction coeflicients of the tangent line of the branch); by D/, the first
tensor D ;) whose components are not all zero (these are similarly the co-ordinates of the
osculating plane); and by E’ the first non-zero determinant £ ,.
For the sequence of type 2 we have to consider the ordinary cuspidal branch, for which

P*=p5, Dy=Dyyy, E' =Eyy;
and since in this case

d. — D59 _ —a3 D9+ a, Dy
1 d% H 27 ag ’ *
(15-1)
e, = __Dy(23), ey = a3 Dyo5— a5 D5y
a3 a3 ’
E’ D, D,
we have Dap = PGE Ag(12) = ——5,2, D = “?f . (15-2)
The parametrization of the plane W} ,(P,) gives
X;:Xﬁ: Yoox = —¢,:dy1a) = a’D:a’D, 10,
whence supplying the remaining co-ordinates from (14-2, 3), of course with
1:l:p=a’":b":c, (15-3)
we have the following parametrization of the locus @, on W} ,
5= p’aD;g, Yabvé = 0, (15-4)

Asin the case of I, ,, we consider also the loci such as @5 of images of sequences satisfying
conditions which are only invariant under projective, not under all regular, transforma-
tions in S5. For W, , @3, the locus of images of collinear sequences P, P, P,, is the only one of
these that arises. As the condition for PP, P, to be collinear on a simple branch is D4 = 0,
we have merely to put this value into (14-1) to obtain the parametrization of the locus ®5

on W, , Xz=o, Y68 — peplprpe. (15-5)
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This is, from the point of view of the projective geometry of I} ,, merely one member of a
system of equivalence, on which the group of self-collineations of I , is transitive, and of
which each member is the locus of images of sequences on the characteristic curves of a
fixed net of surfaces with a simple base point at P,.

For the parametrization of the locus @, on I¥; ,, we have to put ¢, = 0 and the values of
dy, €1, Ao from (15-1, 2) in place of those in (144, 5) ; then, multiplying by a’® we find that
(14-10) and the top line of (14-11) are proportional to

0, 0, 0,

a“D.E, —a*®D;D, —a’D2

—a“D,E’, a’*Dp, a“D; D,
and (—1)a’ DD} (1=0,1,2,3,4),

the rest of (14-11) being all equal to zero. Finding the values of the remaining co-ordinates
from (147, 8,9, 12) we obtain the following parametrization of @,

Xpigomes = —p'a...p'sp'=D) Dy,
Vg =p'a . p'=DE, > (15-6)
Z/O?LI---M = p'aID' 1D;32 ,:?3 /194’ J
all other co-ordinates = 0.

For the locus ®; on W ; we have to consider a (rhamphoid) cuspidal branch of the
second species, with a; = by = ¢; = 0, Dyyq) = 0, so that

p'* = p3, D} = ‘Dﬂ(24)3 E' = Ey.
For this branch

d —0. d — D54 d. — “aaDz(24)+‘12Dz(25_)
17 Y 2 2 3 3 ) 3]
as a3

. D00 _ a5 Dy(24) - a3Dy(25)
e Yt 9 Yreo

9 ey

2 3 3
a; a3

so that the dilated branch is cuspidal and

E’ G G+
Ax(23) A A‘1,(23) = 5715’ A.’5(23) = ;{fzz"'
where G = —2p§ Dyooyy+p3 Dyios

is a t-invariant of weight 9. We note that p'* G}/ —p'# GJ* = 0, and it is in fact convenient to
write G == p*D}, though of course DY is not a polynomial in the coeflicients in (12-1);
it is equal to Dy —2p Dgoy, Where p = agfa, = byfby = ¢5/c,.

We have thus, to parametrize @j, to substitute these values of dy, €5, Ags in a3 A4,
dy Aoz €409 for the three rows of (14:10), and equate all of (14:11) to zero, this being
the application of the dilating transformation to (15:3); multiplying by a’® we see that
(14-10) are proportional to o ‘

a'’E’, a’8G, a'8Gx,
a"“D.E/, a”’D, G}, a”’D, G,
—a“D E’, —a’"D,G;*, —a’"D,G}

y Ty
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and again finding the remaining co-ordinates from (147, 8,9, 12) we have the following
parametrization of @,

Xpgowh =p'a . p' =D Gyf = p'...p"=sp'’D, D,

Xgrwwh =p'a  p'wGyf =p'a .. pwpFDj,
Yoo = p'a . p'«D,E, (15-7)
Yoo — p’au p’awE’,

all other co-ordinates = 0.

The remaining ® loci are similarly found; it is hardly necessary to go through all the
workings. We have in fact

®,5: cubic branch with
P*=p§, Dp=Dyqy E' =Ey;;
the dilated branch is simple, giving
Yge =p'a . p«DyE,

Zg . 4 =D0"D;... Dy, (15-8)
all other co-ordinates = 0. J
@3 the same but with Ey; = 0 (E' = Eyq) ;
Zfvpe =P Dy D, | (159)

all other co-ordinates = 0.
®, ;: cubic branch with Dz = 0;
p'*= 3, Dj = Dyss, B’ = Eyy;
the dilated branch is cuspidal, giving
Xg:.é.oq,as — ___p’dl . p'aBD' ’
Y;l...ou: p’otl ~--p,a4D;E,9 (15'10)
all other co-ordinates = 0.
@y quartic branch with Dy = 0;
P*=p% Dj=Dygy E = Ey;
the dilated branch is cuspidal, giving
Ygi-a = p'ar | p'aD)
A P | (15-11)
all other co-ordinates = 0. |

Turning now to the @ loci corresponding to conditions that are projectively but not
regularly invariant, we have a primal ®@j, locus of images of sequences in which P, lies in
the osculating plane PP, P,. This is evidently obtained by putting E = 0 in (14+6), so that
its equations are Y| = 0, the values of X", Z" being as in the generic point (the dots
standing for any indices or none). This meets @y, @3, D(yy, D, 5 in the loci obtained by
putting E' =0 (i.e. Y =0) in (156,7,8, 10); it contains @,; and does not meet @5,
as we obviously expect.
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Lying on ®j is the locus @5 of images of sequences in which PP, P, are collinear. As the
conditions for this are D, = 0, from which also follows E = 0, and

L. . 5 =03 D/ma) = paD;f
say, the parametrization of @5 is

chp..ocg,ocg = p* ... png;,
7010013 — pag . pocls, (1512)

all other co-ordinates = 0.
53 is given by Dy = E = G% = 0 in (14:6), i.e.

AT - P ... p®, }

. (15-13)
all other co-ordinates = 0;

and @; _, refers to a cuspidal branch with Dyg) = Doy = 0,
Pt Dy Dy, B = E
Xgu..-ota: a9 — I),ocl e p,agD'(;’ }

) (15-14)
all other co-ordinates = 0.

We note that as we expect @, 3, @yg 3, 5 5 are the intersections of @, @y,y), D5 respectively
with ®@,.
16. STRUCTURE OF W, ,

We have seen that W, , is 2n-dimensional, and is generated by an oo0? congruence
{Wy ,_1(P)} of projective images of W, ,_,, each of which is the locus of images of sequences
having P,P, in common, i.e. touching a fixed line P P, through P,. These are of course the
characteristic system of the net || of primals on I} ,, each of which is the locus of images of
sequences whose tangent PP, lies in a fixed plane through P,. The equations of €2, and
W, -1 (Py) are clearly of the form k,p* = 0 and p* = k?, where k?, k, denote constants,
and = means that the components of two tensors are proportional. Since {W; ,_,(P,)} is
a congruence of (2n—2)-folds on IW; ,, one of which passes through every point and no two
of which have a point in common, and since W ; = S,is non-singular, it follows by an obvious
induction that W , is non-singular; the argument is the same as for I#; ,, and applies
equally to W, , for all r. '

W;., is similarly generated by an co* congruence {W; ,_,(P,)} of projective images of
Wj, u-9 ---» and an 00?"=2 congruence of planes {W; ,(P,_,)}, each W; ,_;(F) being the locus of
images of sequences P, ... P, beginning with a particular subsequence P, ... P. W;  is thus
a fibre space of W; , s over W} ;. | v

Every surface F passing simply through P, defines on W} , a sequence Q; > Q, > ... 2 Q,
of subvarieties, Q; being (2n—1)-dimensional, and being the locus of images of sequences
in which P, ... P, lie on F. In particular if F is a plane, we shall denote the corresponding
Q. by Q.. Itis clear that any €, is generated by oo’ members of the congruence {; ,_,(P)},
one corresponding to each sequence P, ... P,on F, i.e. {);is a fibre space of W; ,_/’s over W, ,.
In particular Q, must be a birational model of W} ,; it is in fact a projective image of I, ,
as is easily seen by considering the Q, corresponding to the plane z = 0; for this

6= ...=€¢, =0
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in (13-1), and in the parametrization of ¥, , all the monomials vanish except those which
provide the parametrization of W, ,.

(); traces on each of the co! W, ,_,(P,)’s lying on the same Q; the image of an £, ; of
W;. .1, which is the locus of images of sequences P{V... P{D in which P{V... P{) are on the
transform FO of F.

If F, F’ are two surfaces passing simply through P, and having contact of order ¢, i.e. such
that their curve of intersection has an (z+1)-ple point at Py, and P, ... P, is a free sequence,
if Py ... P are on F they are also on F”; thus the (s defined by F, F”’ are the same; if P,... P,
are on F they are also on F’ if and only if P P, is one of the -+ 1 tangents to the curve of
intersection of F, F’; thus the ,,,’s defined by F, F’ have in common their intersections
with the W; ,_(P,)’s corresponding to these i+ 1 tangents. It follows that the Q; ,’s on £,
are a linear system compounded with a congruence of (2n—:—2)-folds, which on each
member of the system form a rational pencil, the intersection of two members of the system
consisting of 41 members of the congruence, so that the projective model of the system
is a rational ruled surface of order i1, whose points correspond to the members of the
congruence, and its generators to the pencil traced on Q; by {W; ,_,(P))}. The system
|€;,1]| on €, is thusof freedom i +2. (As well as its variable intersection, compounded with
the congruence, it has also a base locus, as any two members of the system have the same
intersection with @;, 2 < j <¢+1; it is in fact easily verified that if P, ... P, is a sequence in
which any of P, ... P, are satellites, and P, ... P, are on F, they are all also on F".)

We have seen that |Q,| is a net of primals on W ,, whose characteristic system is the
congruence {I¥; ,_;(P)}. The co? loci Q, generate W} , simply, one of them passing through
each of its points, except thatoo! of them pass through each point of @3, since every sequence
P, P, P, lies in a unique plane, unless it is collinear, when it lies in co! planes. Similarly, the
o0? loci Q, generate @5 simply, except that co! of them pass through each point of ®z; and
in general the 002 loci ; generate the locus @s; of images of sequences in which P,...P,
are coplanar, simply except thatco! of them pass through each point of ®5—;.

It is clear that any net |F| of surfaces in S with a simple base point at P, defines a set of
loci algebraically equivalent on Wj , to @5, @5, and the 00? loci (), and transformed
into these by the self-collineation of I, , induced by the transformation in §;, regular at
Py, which transforms the net | F| into that of planes; they are defined in the same way, merely
replacing the conditions that P,...P, are coplanar or collinear by the conditions that
these points lie on a surface of the net, or on a characteristic curve of the net.

Similarly given any pencil |F| of surfaces in S5, whose base curve passes simply through
Py, we can define a locus 2, of images of sequences such that Py ... P, are on some surface of
the pencil. This is obviously of 2z—:+-1 dimensions, and generated by a pencil || corre-
sponding to the individual surfaces of the pencil, and having in common the W; ,_,(P)
corresponding to the sequence P, ... P, on the base curve. If |F| is a pencil of planes we shall
denote by Z,; by %,. Any X, is W, , itself; |Z,| is a net of primals on W ,, with ®@; as base
locus, and {Q,} as characteristic system; in general |Z,] is a net of primals on ®;>; with
®;— as base locus and {Q} as characteristic system. Obviously the ;s corresponding to
the co? pencils in one net (with a simple base point at Py) are similarly related. We note that
the equation of %, is of the form k/D » = 0 as those of Q,are D s = K.

59 Vor. 254. A.
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17. OUTLINE OF GEOMETRY ON W, ,

We shall illustrate the remarks of the last section by examining some of the loci in question
on W; , and W, ;. The former has been studied in detail by Semple, but it is convenient to
recall here some of its geometrical properties, both in illustration of what has been said
above, and because some of its subvarieties, as well as itself as a whole, will require to be to
some extent known before we can embark on any examination of I} .

The locus @, on W, ,, parametrized in (15-4), is the sextic threefold in 7, general (i.e.
non-tangent) section of Segre’s classical sextic fourfold in S, direct product of two planes
in which p* D, are homogeneous co-ordinate systems, the secant prime of course being
given by (14-2). This threefold, which we shall encounter in several connexions in the
course of this work, is familiar as W, the minimum order model of the aggregate of
sequences P P, in a plane, i.e. of the figures of a point P and a line PP, through it. It is
equally of course the minimum model of the projectively equivalent aggregate of figures
in S, of a line PP, through a fixed point P,, and a plane P, P, P, through the line. We thus
expect to find this, or a birational model of it, as the locus of images on W} , of sequences
of any type such that the whole sequence is determined by the tangent P P, and osculating
plane P P, P,, as is the case here.

This threefold is generated by two congruences { /}, {g} of lines, with equations p* = k2,
D, = ky, respectively, which are the characteristic systems of two nets | /], | G| of ruled cubics,
with the equations k,p* = 0, kD, = 0, generated by those lines of one system which meet
a fixed line of the other (its directrix line). These satisfy

F.F=f F.G=f+g, G.G:g;} (17-1)
F.g=G.f=1, F.f=G.g=0;
thus on the projective model of the system |iF'+ G|, parametrized
Xpogi=pn...p*Dy, ... Dy, (17-2)

which we shall denote by w® 7, so that the sextic from which we began is w®: D, the images
of f, g are curves of orders j, ¢, and those of ¥, G have prime sections which are images of
(t47)f+sg, if +(i+))g, and orders j(2t+)), i(t+2f), and the order of wé is 3¢(¢--7).
We notice at once from their parametrizations that on W} ; the condition loci @), Dy,
®, 5 3, D3 5 are respectively w9, w* D, w® 2, WO V; and that in fact a sequence of either
of these types is uniquely determined by its tangent and osculating plane, though in the
last case this plane is not to be defined as PP, P,, these points being collinear, but as P, P, P, P;.
The locus @z on Wj , is the surface of order 16 mapped on a plane by all quartic curves,
and parametrized in (15-5); it has on it a homaloidal net of quartic curves |a|, images of
the lines of the plane. W, , is very simply generated by the congruence of planes
{W} = {W; ,(P,)} joining each line f of @, to the corresponding point of ®z. € is similarly
generated by the co! planes that meet a given line g, i.e. that join the generators of a ruled
cubic F to the corresponding points of a quartic curve g, and is thus a septimic threefold
Each surface ), is a ruled quintic, with one generator in each plane of the corresponding
Q),, and with the same directrix line g, and is the residual section of (), by a prime through
two of its generating planes; amongst these is £,, generated by the lines joining correspond-
ing points of g, a. &, is generated by co! ruled quintics £, whose directrix lines g meet a
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fixed £, and whose quartic directrices a form a pencil on @5 through a point O ; it contains just
one plane W = Of, meeting each of the pencil |Q,]| in a line. The tangent planes to |§2| at
O evidently generate a quadric cone, so that O is a double point of Z,.

A base for primals on W} , consists of |2, |, @, ; one for surfaces of {IW}, |FF|, |G|; and one
for curves of { f}, which is o0# as it includes any line in a plane W, and {g}. The intersection
table is as follows (II denoting the prime sections)

Q, ?, I
Q, w F AW+ F
D, F —3F+G F+G 17 F G
w 0o f f w 0 0 1
F f —9%tg 2% +g F 0 1 -2
G Ftg —3f— 9 F+2¢ G 1 —2 -3
f 1 —3 1
g 0 1 1
and there are the following equivalences
Q,=2W+F, @O;=1TW+2F1G, (17-4)
a=3f+g. (17-5)

18. OUTLINE OF GEOMETRY ON W; ;

For the detailed discussion of W; ; we shall (apart from the ® loci and other condition
loci ), 2, for which finding new names would be otiose and confusing) denote fourfolds
and threefolds by capital and small German letters, and surfaces and curves by capital
and small italics. In particular we shall use W, W for W ,(P,) and the plane W; (P,).

Since the congruence {W} is mapped on W , (which is what we mean by describing
W; 5 as a fibre space of planes over I} ,), every subvariety of W; , has on W; 5, as well as an
obvious image (to within equivalence) on each 2, an image in {}, namely, the variety
(of two more dimensions than itself) generated by the corresponding subsystem of {I//}.
The images in {I¥'} of the condition loci ®,, @3, Q), Q,, X, on W} , are the similarly named
condition loci on W} ;, since the conditions only involve PP, P,, and every sequence P,P, P,
satisfying them determines a point of W} , and a plane W on W} ;; similarly the image of
W is W; those of F, G, f, g, a we shall denote by &, ®, f, g, a

The image on W of @, on W} , is a w- D which we shall simply call w, and is the trace of
®; on Y. That of (2, on the other hand is a threefold generated by oo! planes W, locus of
images of sequences P, P, P, Py in which PP, is a fixed line and PP, P, a fixed plane through it;
as the locus of images on W; , of sequences Py P, P, with this property is a line /, this septimic
threefold is what we have already defined as f. The images on 9 of the ruled cubics F, G,
and the lines /, g will be denoted by the same symbols F, G, f, g. Thus{ f}is anoo® line system
consisting of all lines in all planes {W}, {¢g} is an c0* congruence simply generating ®,,
oo0? of them on each w. As ®; meets every plane W in a line f”, { '} is also an 0o line con-
gruence simply generating @;, and every subvariety of W} , has a further image in {/’},
namely, the variety (of one more dimension than itself) on ®,; generated by the corre-
sponding subsystem of { f'}; and this is simply the trace on @, of its image in {I/}.

59-2
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There are as we have seen other images of w on W} ;, since D), Pyg3, Dy 5 5, D5 5,
parametrized in (15-9), (15-11), (15-10) (with E’ = 0), (15-14), are respectively w:%;
w*® D, w6 2 m® . On each of these we shall denote the images of F, G, f, g, loci of images
of sequences of the type in question with respectively tangent in a fixed plane, osculating
plane through a fixed line, fixed tangent, and fixed osculating plane, by A, N, m, n, with
in each case the suffixes of the corresponding @ locus. Each of these being parametrized
in terms of the co-ordinates p’®, Dj of the tangent and osculating plane have a natural
mapping on each other; and it is clear also from (15-8), (15-10), (15-6) (with E' = 0),
and (15-7) (where E’ = 0 makes D = Dj), that @, ©, 5, O, 5,and @, ; are each generated
by o0 lines joining corresponding points of two of these w®4’s, namely @3 and Dy,
Dyyq)5 and @, 5 35, Doz and @, 5 5, D, 5 5 and D5 4. Finally, from (15:6), O, is generated by

2,33

Ficure 5. Special loci on W; 4 (traces on W o(P))).

o0? planes joining corresponding points of M3, g3, Py 5 5. On each of these fourfolds
we shall denote the threefolds generated by lines meeting a surface M, N on each of the
directrix w®”’s by s, t, and the surfaces generated by lines meeting a curve m, n, by S, T;
the similarly generated fourfolds and threefolds on @, are what we have already denoted
by &, ®, f, g. The remaining fourfold @ locus, @z, has a generation different from the
others, and more analogous to W; ,, namely by co? planes W, each joining a line m; 4 of
®; 4 to the corresponding point of the surface D33, which is of order 169, being mapped on
a plane by all curves of order 13, and having on it a homaloidal net |¢| of curves of order 13.
(@5 is not, however, an unexceptional birational model of 4} ,; it would be so only if the
orders of the curves ¢, n; 3 differed by 3 instead of 4 as is the case.)

On W, corresponding to a fixed tangent, @, traces a threefold f and @, a threefold w,
®; a plane I and each of the other fourfold ® loci a ruled surface S, each of the threefold
® loci a curve m, and Q33 a single point. These are shown in figure 5. Since my3), M(z3)3,
my, 3.3, Mz, yare of orders 4, 1,2, 1, the ruled surfaces S, S5, 3, S, 35, S5, 5 are of orders 5, 3, 6, 3,
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respectively; in particular as the two cubics S, 3, S; 3, meeting in the conic m, 5 5 are both
on the w traced by @, and as the generators of the former and the directrix line of the latter
are seen to lie in planes W, the former is a surface F, and the latter G. It follows that whereas
the generators of @y, @, 5, D, 5 belong to the system {f}, those of @, 5 belong to {g}, as
do also the generators myys) 5 of Oyg)s.

In order to exhibit similarly the curves z on the threefold and ruled surfaces 7" on the
fourfold ® loci, we have to consider the locus £2,, which corresponds to a fixed osculating
plane in the same way as 98 to a fixed tangent. We have seen that (0, for the plane z = 0,
can be obtained by putting ¢, = ¢, = ¢; = 0 in (13-1); when the resulting values of the
t-invariants are substituted in (14-6) all the co-ordinates vanish except those in which every
covariant index is z and every contravariant index x or ¥, and these are just the monomials

23

Ficure 6. Special loci on W; 4 (traces on Q,,.

(7-5) which parametrize W, 3, of which Q, is a projective image. To obtain Q, we only put
¢, = ¢, = 0, when aswell asa, b, D,, G%, G¥ we have the following non-vanishing ¢-invariants

Gj = —abc;, GY=—-b%,;, G}=a%; Gy=abc, E=D,c,
and the monomials in (14-6) which contain these and do not vanish reduce to
at"biD2¢c; (1=0,...,4),
a’"bD,c; (1=0,...,7), (18-1)
al0-ipic, (t=0,...,10).
These parametrize a birational model B! of the ruled quintic_Wz, 5, on which the directrix
appears as a quartic curve and the generators as conics; and £}, is generated by co? planes
W, each joining a generator f of {5 (image of /3 on W, ;) to the corresponding point of B'7.
We see in figure 6 the traces of the threefold and fourfold ® loci on £2,, more or less in

corresponding positions to figure 5. As the curves ), f(3)3, 19, 3,3, 13, 3 are of orders 1, 4, 6, 9,
the ruled surfaces Tiyq), 75 3, 15 3, 13 3 are of orders 5, 10, 7, 15; and g, generated by planes
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joining corresponding points of the first three n curves, is of order 11. The lines 7,3, do not
belong to the system { f}, since each does not lie in a plane I but is unisecant to the gener-
ating planes of g; nor do they belong to {g}, as they are not on ®,; they therefore form a third
line system on W} 5, which we shall denote by {4}, 002 and generating ®;3); and just as f is
generated by the planes I/ that meet a fixed line g, g is generated by those that meet a
fixed line 4.

Since if PyP, P, are collinear and P, isin a given plane through P, P, is in this plane like-
wise, @5 traces on Q, not merely a surface but a threefold a (image in {I#} of a curve a on
W, ,, which is likewise the trace of ®; on Q,) meeting @53 in a curve e. Similarly ®; , traces
on Q, not only the nonic curve n3, 3, but the surface M ; of order 19, generated by the lines
ms 3 that meet n; ;. The threefold a is generated by the planes W joining each generator
ms 3 of M 5 to the corresponding point of ¢, so that the order of a is 32. We see also in the
figure a ruled surface £ of order 22, generated by lines (one in each generating plane of a)
joining corresponding points of 75 3, e. This is the locus of images of sequences of type 2
(i.e. with PP, P, collinear) that are wholly in the plane defining Q,.

Since if P, P, P, are in a given plane and P, P, P, Py are co-planar, either P; is also in the given
plane, or P,P, P, are collinear, the trace of @5 on Q, breaks up into O, and a, meeting in the
surface E. On Q,, the images of the surfaces ®,, ®,, @5 on W, sare T, 5,15 5, and E; in fact,
this part of figure 6 is readily identified with figure 1. Q, is thus generated by a pencil
|K| of ruled quintics (image of |, ,(P,)| on W, ;) each having a generator of 7} 5 as directrix
line, and the generators of 7, 5, £ that meet this as two of its generators.

Still taking the plane defining Q, to be z = 0, we can find the trace of @, on Q, by putting
¢y = 63 = ¢4 = 0 in (15-7). This makes ¢’ = D, = D, = 0 and

D} = —b'c;, D) =a’c;, E' =D,c;
the monomials that do not vanish in (15-7) are
a’s-b"D.D. (i=0,...,6), a’"~p"D’ (1=0,...,9),

which parametrize 7} 3, and those in (18:1) with a’, b’, D, ¢; in place of a, b, D_, ¢;, the
co-ordinates proportional to these being the same as before. Thus the trace of ®, on £, is
generated by co? lines f”, joining corresponding points of 7; 5, B'7, both of which are
birational images of I, ,; the lines that meet n, ; 5 generate 7, 5 (ny4 being as we have
said the directrix curve on B'7), and those that meet a generator of 7} 5 trace a conic on
B'7 and generate a ruled cubic F. |

MW and Q, have no intersection in general, but if the line PP, defining 98 lies in the plane
P,P, P, defining Q, they have in common a threefold . Such threefolds appear partially on
both figures 5 and 6, being generated by the planes ¥ that meet a line g on @, 3; for each
such line g in each figure two generating planes of the corresponding f appear, one on @,
and one on ®5; only in figure 5 the second of these planes is the same for all the generators
of S5 3. The ruled quintics K, one on each of these {’s, generate the trace of @ in figure 5 as
well as in figure 6, and they appear in the same way in the two figures, the directrix showing,
and two generators, one on @, ;and one on ®5; but in figure 5 these second generators form
a pencil in the plane trace of ®5; the trace of ®; on W is in fact the image on W of a 2, on
W;, 5, and has a double point at the point trace of @g;. @3 is accordingly a locus of double
points on Ps.
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19. BASE AND INTERSECTION THEORY ON W, 4

Before seeking for a base, it is as well to obtain some equivalences between the numerous
curves, surfaces, and threefolds which we have defined. By considering prime sections of
the ruled surfaces in figures 5 and 6, and of the threefolds f, g, a, we have

mop = 3f+g  ngp="h

Ma3)3 = &> fags = 3+, (19:1)
My, 5,5 =J+8  ny55=>5/+h, S
mz, 5 =J 13,3 = 8f+3g+h;
K =Sgy =2W+F, Ty =R, -
Spa=F, — Ty,=5W+R,  (192)
S,5=3WIF, T,;—2W+R|
=9 +3g+h, E=3W-4M, (19-3)

where we have defined R as the lowest in order of the T surfaces (it is in fact a quintic).

On the other hand as the images on £, of ®,, @5 on W, , are T, 3, E, we have from (12-1)
. E=3K+T,5=8W+3F+R, -

and from (19-3) My = 5W+3F+R. (19-4)

Now if @ is any of the four ® loci generated by lines joining cbrresponding points on two

of the threefolds w®?, w7, distinguishing the surfaces M, N and curves m, n on the latter
by dashes, we see by considering primes through w4, w¢ /" that

1. ® = wh)+i's+j't = W) is -t
I.s = MoA (7' +j") S-+j' T = M+ (i-+f) S+iT, (19:5)
it =N+IS+@'+j) T = N +iS+(i+j) T, ‘
where IT as usual denotes a prime section. Thus defining I = Mys)5, J = Nz, which are the
surfaces M, N of lowest order, both nonic and ruled in {g}, {#}, respectively, and putting in
the values of the various surfaces S, 7" from (19-2) and of M; 5 from (19-4) we find
*M(zs)*?’R‘l’I ]”(23)3“1 My, 5= 5W+3F+R+[ L
Sy, 3:0 Ty, 5 = 2G+1, Nz—3:21W+-5F+7G+3R+21+J. '
Further, considering prlmes through the two directrix surfaces T3 3 B of the threefold
intersection of Q, with @, we have :
I1.Q,. D, = T, 5+ 2F 10K = B+ F4 9K,
so that - B =T, 5+K—F=2W+2G+1 =~ (197)
This glves us, as linear combinations of W, F, G, R, I,. J, all the surfaces on W; 4 which
have been considered, with the exception of ®53. For this, we have to consider intersection
relations on @5, which as we have seen is analogous (though not identical) in its structure
to Wj ,. A base on @y consists of a, @5 5, W, M5 3, N5 5, m5 3 = f, 13 _5; and as the prime sec-
tions and intersections with a (on @) of each of these three surfaces are easily found, we
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can construct the intersection table for threefolds and surfaces on @ as follows, the middle
column being obtained from the identity between the three columns that follows from the
fact that the prime sections of @; are the system 13a+®; ,

a ®;,4 | 1Ba+dy
w 0 f f
Mz ! — 34154 10+ 75,5
N, S+ns,5 —4f—3n3, 5 97+ 10n3, 5

Since @z does not meet P; 3, and traces on B a curve e, or 4f+ 13, it follows that
Dy = 13W+3Mj y-+ Ny 5 = 49W 4+ 14F+ 7G+ 6R+21+ J. (19-8)

Some relations between the various threefold and fourfolds can be obtained by con-
sidering the sections of @, by primes through ®@y3), O, 5, and O, 5 5; we havein fact evidently

IT. (I)z = q)(23)+68’+2(5 = (D2,3+65"|‘4® = ®2,§+4§‘|‘(‘5,\

II.§ = 54+ 8f+2g = 52,3‘|‘5f+49 = 52,§+5f‘|‘9: (19-9)
I1.® = t,5+ 6+ 8g =1, 3+{+5g :t2,§+4f+59-
Thus ifWC deﬁne u == 5(23), D= t(zg), = 53, 3 I) = t3’ 3

N

we have from (19-9) Sy, 3 = U+3f—2g, t,;=1+5f+3g,
82,5 = U+3f+g, t2,§:U+2f‘|‘3g}
and from the top line of (19-5) with (19-10)

(19-10)

D3 = Dryy3— 31+ 30,
Dy,5,5 = Dpg3+ 11§ —g-+2u+0, (19-11)
D5 5 = Dyg)3+11f —g--2u-+0+ 3x—1).

But since the images in {/"} of W, F, G, ®3 on W} ,, are w, s,,3, t, 3, Pg 5, we have from
(17:4) ®; , = 11f—g-+2u-+0+7m,
and comparing this value with (19-11)

Dpyys+ 3% = Tw+1). (19-12)

Now, to find a base for all dimensions on W} ,, we can take, for each member of a base
on W, ; (including itself and a point) first its image in {W}, then a variety tracing a line on
each plane of the subsystem in {}, for which clearly the image in { /'} will serve, and finally
one meeting the general plane of the subsystem is a point. As an example of a subvariety
of W; 3 meeting the general plane W in a point we shall take the linear system |3| of which
®, ;5 is one, traced on @, by the primals co-residual to @;. This, however, meets 002 of the
planes in lines mz 3 = f’; it is thus a birational image of W} ,, but with the surface ®;
dilated; it is in fact easily seen (since the images on 3 of f, g on W} , are my 4 3, 7y 5 5, Of
orders 2, 6) to be the projective model of the subsystem of |12, +-2®,| on W} , which has
®; as simple base locus.

Table 4 gives a base of all dimensions on W; , with the images of each element in {I/},
in {f'}, and on J3; the only new notation is |Q], the net of fourfolds traced on @, by Q,,
with characteristic system {w}.
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It is thus clear that Q,, @,, @, are a base for primals, I, Q, F, ®, 3, (s, for fourfolds,
f, g, u, v, W, %, D3 for threefolds, W, F, G, R, I, J for surfaces, and f, g, & for curves.

All equivalences on W} , are repeated in {2}, in { /'}, and on 3 (mod @5 ;). Intersections
are repeated in {IW} as intersections on W} ;, and in { /'} as intersections on ®; (or on W} 4
of either member with something tracing the other on ®@;). For the prime sections, since the
residual section by a prime through @, is compounded with {/W} and cuts f, g in 4W, W
respectively we have from the base and intersection theory in {W}

IT=13Q,+4®,+ D, (19-13)

and cutting this equivalence by ),

IT.Q, = 13W+4F + Q. (19-14)
TABLE 4
in {W} in {f"} on 3
Wi, s Ws,s 0, 3
Q Q, Q 55,5 =%
o, @, Dy, 5= D3 +5F 26 Dy, 5,5= D33+ 11f—g+2u+0
w DI w S3,3=G
£ i} Sp,3=3f—2g+1t My, 45 =BW+F+R+1
G ® ty, 3 =5f+3g+0 N, 35 =21W+8F+4G+3R+2I+J
f f Sy, 3 =F My, 3,5 =J+g
g g Ty,3=5W+R ng,3,5=9f+h
point w I point

Similarly, as a prime through J cuts F, 7, ; residually in f, 4f,
H.<I>3:7Q+3+®2,3:5%—2@+7Q+3+(D<23) (19:15)
and again cutting by €,
II.Q = Tw+8; 5+5, 3 = 3f —2g+u+Tw+x. (19-16)

We are now in a position to construct the complete intersection table (Table 5) for W} ;.
The prime section of each element of the base either is given above, or is trivial, or is found
from (19-5) with the appropriate values of 7, j, ¢', j'. The section of each element by €, is
easily found; that by @, is clear except when the element lies on ®,, when it can be found as
the section, on ®,, by the latter’s characteristic system | —3&-+®|. The section by @,
where it is not obvious, is found from the linear identity (19-13) between the four columns.
The sections by fourfolds and threefolds are obtained from those by primals, using the
associativity of intersection, and expressing each fourfold or threefold as a single inter-
section, €.8: G — (30, +D,). ) = (Q+20,+D,).C
and so forth.

All the @ loci except @3 have by now been expressed in terms of the base; and as

.®;—3 weh
®;. @5 = 3 we have @5 — 6, + 30, + D, (19-17)

60 4 ' . “ Vou. 254. A.
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For the remaining condition loci, applying (17-3,4) to {WW} we have
%, =3Q0,+0, Q,=2MW+F, (19-18)
whence 2y =05.2, = W+ 17— + 3D~|—(D<23),} (19-19)
Qg = @5.Q,—a = 6f+u+2w.

20. LiNE sysTEms oN W

We cannot of course fail to notice the analogy between the three line systems on W} 4
and those on W, 3, and that the images on Q, of 1}, 1, I on W, 5 are k, g, f, respectively;
and we natura]ly expect to find on W}, a sequence of z line systems of increasing dimensions,
analogous to that on W}, ,.

We have on W; , a subvariety w®%, where j = §(3""!—1), given by the monomials
p*Dy, . Dﬂ] in its parametrization, the other co-ordinates vanishing. Each generating
line of thlS is clearly the unique line /; on the (), given by the same ratios D, :D,:D_; and
thus this w4 is the locus @5 of images of sequences in which P, ... P, are all prox1mate
to P, and all collinear in the neighbourhood of P,. This 00? line system on W; , we shall
denote by {/,}.

Just as on W, ,, we now define the c0% line system {/;} on W} , to be the union of the line
systems, images on all the 02"V W, ;. ,(P_,)’s of the system {/;} on W; , .. . This system
generates the locus ®,, 755 of images of sequences Py ...P, in which P,P,,,...,P, are
all proximate to P,_;, and all collinear in the nelghbourhood of P,_,. Itisalso clear that the
images on each Q, of the lines {/;} on W, , are a subsystem of {ll} on W, ,. In particular the
line system {/,} consists of all lines in all the co*»~V planes {W; ,(P,_,)}.

Obviously the line systems {/} on all W, ’s (n > i) are in one-one correspondence with
each other, being mapped on the points of W, ;_;. On W} , the situation is more compli-
cated; but it is still true that the line system {/;} on all W; ’s (n > i) are in one-one corre-
spondence with each other, as can be seen from the following argument.

Suppose any consecutive sequence Py ... P,_; to be dilated, giving a variety $¥ on which
the neighbourhood of P_, appears as a plane W®, and in this plane consider any line [®.
Then for any n > i we can defineco! sequences P, ... P, containing the subsequence P,...P_,
by taking as the explicit image P{ of P, any point of [®, and the implicit images Pﬁle, N
of the remaining pointsP,, , ..., P, (ifany) consecutive to P{’ along /?; and these co! sequences
are mapped by the points of a line /; on Wj; ,. The construction is equivalent to taking an
arbitrary surface through P,...P,_, simple at P_,, and taking the rest of the sequence
P....P, on this surface and all proximate to P_;. The lines {/} on I¥; , are thus in one-one
correspondence with what Semple calls the surface elements of the ith order at P,

A minimum order model for the co? line system {/,} is of course a plane; one for {/;} is
a fibre space of planes over W, ;_;, but this of course does not suffice to identify it with
W ;; we shall see in fact that already for i = 2 the two fourfolds are quite different.

Let us define the fourfold & as follows: We take w* = w® !, on which we define as usual
the lines { /*} and i-ic curves {g*}, and the surfaces |F*| (ruled in { /*}) and |G*| (generated
by a pencil in {g*}). We take also a surface C*, mapped on a plane by all j-ic curves, the lines
of the plane appearing as a homaloidal net |¢*| of j-ic curves of C*. The lines {/*} being
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mapped in the obvious way on the points of C*, we join each corresponding point and line
by a plane W*, and those c0? planes generate the fourfold &i. Thus W; , is S}, and the locus
®; on W ; is Sf;. We define the threefold g*, generated by the oo! planes W* tracing a
ruled surface * on w* and a curve ¢* on C*, and the ruled surface R* generated by lines
(one in each plane of ¢*) joining corresponding points of ¢*, g*; and we note that as any
line in a plane W* is equivalent to /*, on R*

g —c* = (i—j) /*. (20-1)

The prime sections of &} are the system | jq* -+w*|, and we easily construct the intersection
table (Table 6), from which follows the equivalence

C* =[(t—))+i—j+ 1] W*—(i—j+1) F*+G. (20-2)
TABLE 6
q* W* F* JW*+F* ,
w* F* (i—j) F*+G* iF* +G*
W * 0 f* f*
F* S* (i—j+1) f*+g* (i+1) f*+g*
G* SE+g* (=) f*+@—+1)g* f*+(+1) g*
cx | TU-ifeet 0 JG=1) f*Fig*
£ 0 1 o1
g* 1 i=j Lo

We see that the invariant intersections and equivalences depend only on the difference
i—J, not on 1, j separately; and we expect all & for which this difference is the same to be
equivalent; in fact it is easily seen that the projective model of the linear system

|G+k) g* +w*| on G is Gk

Thus a minimum order model is &}_;,; or &/*! according as i >j or ¢ <j. A striking
difference between the two cases is that in the latter w* is unique while C* varies in a linear
system, in the former w* varies in a linear system and C* is unique.

We now assert that the minimum order model of the co* line system {/,} on any I ,
(n>2) is §}. We can prove this most simply for the system {g} on W} ;. Generated in {g}
we have the fourfolds , 3, the threefolds w, %, 1, ®,;);, satisfying (19:12), and the ruled
surfaces G, I, T; 5 = 2G—1. The c0? generators of O,y 4 and likewise those of each w are
mapped on a plane, while those of 3 are mapped on any w*, the subsystems generating
x,1), G, T} 5 being mapped by F*, G*, f*, ¢*; and each w has a surface G in common with
Z and a single generating line in common with @,y ;. We therefore identify the generating
line system of Dyyq)3 with C* (so that the curve ¢* corresponds to a ruled surface 7) and that
of m with W; and the relations

Jead to gF—c* = 2%, ¥ — TW* _3F% | G, (20-3)
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which compared with (20-1,2) shows that i—j = 2, and that the minimum order model
18 &3

The mapping on &} of the line system {f} on W, , is less immediately obvious, as the
system generates W , multiply, and there is not the same simple correspondence between
subsystems and the subvarieties they generate But it is easy to identify W* with the co?
lines in a plane W, and C* with those on ®,, the latter having just one line in common with
each IW. For w*, we want a subsystem containing a pencil in each W, and having no line
in common with ®,; this is evidently provided by the lines meeting @3, which is unisecant
to W and does not meet ®,. The curves f/*, g*, ¢* thusrepresent a pencil of linesin W and
the generators of the ruled surfaces Q,, F; and the relation Q, = 2W + F gives us the first
of (20-3), which is sufficient to establish that ¢+; = 2. The other equation is (20-3) would
correspond to O, = TW 30,45,
but as W is of lower dimensions than the rest it drops out of the equivalence, which thus
reduces to the second of (17-3).

We may note that an exactly similar procedure enables us to map the co* system of lines
in generating planes of any &} by &, where

(i=))+ (' —=j") = —1.

Thus not only is G} the minimum order model for the line system { /} on W} ,, but W, , is
the minimum order model for the line system { /} on &}. The same sort of reciprocity con-
tinues to hold between I#; , and the minimum order model &, of the line system {/,}, which
like W, , is a fibre space of planes over W; ,_,; for on W} ., the line system {/,} consists of
the generators g of all the w®:V’s, images on W} ,(P,_,) of @, on I} ,; the lines in each ™
are mapped by a plane of £, and the generators of a ruled cubic &G on w!:V by a line in this
plane. But every G has its directrix line in a unique plane W; (P,); the aggregate of ruled
cubics G on W} ., i.e. of lines on &, is thus in one-one correspondence with the points

of W; .

PART III. W},; IN PARTICULAR W,

21. HOMOGENEOUS CO-ORDINATES IN THE PLANE

For the study of Wj,, the aggregate of plane sequences P, ... P,, not only with a fixed
origin Py, but with P, anywhere in the plane, in order to obtain results in a form that has
some sort of invariance with respect to collineations in the plane, it is natural to use a homo-
geneous co-ordinate system, which we shall denote by («*, u¥, u#), and to specify the generic
point of an algebroid branch in the form

U = ug+utt+ug 2 ug i+ ..., (21-1)

where (u§, ul, u3) are not all zero, and are the co-ordinates of the origin of the branch.
For the generic branch, we can form an affine co-ordinate system (x,y) with origin at the
origin of the branch by defining

Yy
o, WU,

X = s Y - 2 .z
wooug u?  ug

(21-2)
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and by straightforward division in (21-1) we obtain the generic point of the same branch
in a form in which the coefficient g;, b, of (3-1) are explicit functions of the coeflicients in
(21-1). In fact, defining the determinants

.. . Gutip) = eaﬁyuiﬁu}’
it is easily seen that
a) = qy(Ol)/(ug)z)
a9 = (_u’lzqy(m)+u59y(02))/<u3)3a
ay = {[ (uf)* —uguz] Gyon — 45U1 Gy(0) T+ (ug)? qy(os)}/(u(z))4a
ay = {—[(u§)® u5 —2uguius + (u)*] gy0n
+uf[ (u)? —u§us] g0 — (4§) 45 9y09 + (46)° gyon}/ (u5)°,

........................................................................

(21-3)

and b, b,, ... are similarly expressed with —g,q, in place of g, Further, defining the

cubic determinants D?;'k — 6 Ut fu};,

we find for the determinants D;; of § 3 the values
Dy, = D,/ (45)3,
D3 = (—ui D, +ug Dgis) | (uf)*,
Dy, = {[(u5)* —ufus] Do —ugui D5+ (u5)? Dif 4}/ (u5)5,

................................................................

(21-4)

Substituting the values of a,, a,, ... from (21-3) and those of D,,, D,, ... from (21-4) in
any /-invariant (a, D) form of the branch (3-1), we obtain a fraction whose denominator
is a power of 43, and whose numerator is a f-invariant, of the same weight and rank, of the
branch (21-1), and is a form in (43,3, ...), in (¢,n» 902> -+-), and in (D,, D&, ...), which
we may call a (u?, g,, D*) form. Since, however, (uf,u¥,u#) are the components of a contra-
variant tensor, with respect to a general linear transformation of the co-ordinates,
(4 9y -67) those of a covariant tensor, and D, a scalar, our («?, g,, D*) form is one
component of a t-invariant tensor, namely that in which all the covariant indices are y
and all the contravariant indices z; and the similar expressions for the tensor companions
of the original (a, D) form are certain other components of the same tensor, namely, those
in which some or all of the covariant indices are x instead of y, the contravariant indices
being still all z.

Thus we easily calculate

D*
D=1
(u5)®
¢-8~ ¢ -5,
(3)®’ 1 (z)5°
"o 0 > (21-5)
kzz kzz kzz
= Iygg’ I, =-2 ng 5 Iy= Ixﬁ 9>
(uf) (uf) (u)
B J;kyzz _ Jz/zz _ J;X;zz )
T =@ N P g
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where (abbreviating ¢, for simplicity to ¢,;)
D= Df)klz,

G;fk“ = (u§ 9p1— 2uf 9ﬁ2) D3<12+”%9ﬁ1D6k13,

Ligh = {3 (u§uf + 2utuf +uguf) 4,195
— 3 (uguf -+ utug) (9,1 950+ 02 951) —u§u8(9y1 53— 59,2952 1 3 951) } Dl
A {(uguf +usuf)) dy19s1 “%”%ug(%l%fr%z 951)} D5+ u%quyl 451 D8y [ (2146)

J;/k«?ﬂ = {%‘(u%”g‘%?”{g“”%u@ 9y1951
+ 3 (uguf +uiuf) (4,1952+ 4yads1) — U5 (451 952+ 3952053+ 4y3951) } Diss

—{(ug‘uf +ufuf) 9y1951 —*g‘u%”g(%l 952+ (Zyz‘]al)}szDms
—u§uf 4,1 951 (Do D14 — 2DR)-

These satisfy of course a good many identities, of which (51, ..., 6) are only a few; (5-4, 5)
for instance are included in

Jigh — DFTigh — GAGfh— GG, (21-7)

It is obvious that u* = ¢, the co-ordinates of the origin P, of the branch, are z-invariants
of rank 0 and weight 0, and that q; = gy, the co-ordinates of the tangent PyP,, are #in-
variants of rank 1 and weight 1. All the further principal t-invariants, of rank > 2, are the
components of tensors with the same number of contravariant and covariant indices;
we have seen that this is the case with D*, the only principal -invariant of rank 2, which has
no indices; with G}¢, the only one of rank 3, which has one of each; and with I¥#/,J¥#/,
the only principal #-invariants of rank 4, which have two of each. We can in fact see that
it is true generally; for if F is a #-invariant (a, D) form, of weight s, of degree £ in (ay, ...)
and of degree £ in (D, ...), the numerator F* in the expression for F in terms of (21-1)
will be a form of degree 4 in (g, -..) and of degree £ in (Dg,y, ...); also, as the sum of
the suffixes ¢, / in all the factors ¢;, D,; in any term of F is equal to s, and as the numerators
in the expressions (21-3, 4) for ¢;, D,; are formsin (u, ...) of degreesz-—1, j— 3, respectively,

F*is a form in (43, ...) of degree
s—h—3k="h

by (5:7). The tensor of which F* is one component thus has / contravariant as well as /
covariant indices.

Further, it is worth remarking that if F is of rank 7, since it is a form in (a,, ...,4,_,) and
in (Dyg ..., Dy,), F¥isa formin (45, ...,uZ_,), in (q,5, ..., g, ,—) and in (D, ..., DE,).

s 1n

The identities satisfied by the finvariant tensors of rank < 3 will be required when we
deal with the parametrization of W ; they are the following

6ysWGH = q,q,D*, ¢7°q,G§/ = —2uu/D*?,
of which the last (with @ = f = z) is (5-1).
The #-invariants of a singular branch can be similarly treated. Denoting the first ¢,

whose components are not all 0 (co-ordinates of the tangent Py P;) by q;, and the first D,
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which is not 0 by D'*, and similarly in the affine form the first pair a;, b, which are not both

i Vi

0 by a’, b’, and the first D;; which is not 0 by D’, we see that in every case

f_ 9% 4y 9 o D
“wor Py D

and D'* is the only #-invariant of rank 2; where for the

a

cuspidal branch, species 1:  q;, = ¢ 2, D'* = Dfs;

cuspidal branch, species 2: Q= ¢ 09, D'* = Dy; (21-9)
cubic branch,  species 1:  q, = ¢,05, D'* = Df,;
cubic branch,  species 2: q, = ¢,5, D* = D§;;.

The t-invariant G’ = —3a3.D,5+2a,D,, of the cuspidal branch of species 1, and its tensor

companion G/ (of rank 4) are given by

G’ = Gr<|(u)s, G ——Gure/(u)s
where G}i*a = (uf 90— UG %3) D3+ 2u qﬂ2D024' (21-10)

Similarly the -invariant G” = — 2a, D, -+a, D,y of the cuspidal branch of species 2 and its
tensor companion GJ (of rank 3) are given by

G" = Gr</(w)e,  Gf ——GL¥5/(u)",

where GZ’*“ = (”?%2‘“2”‘3 %3) D024+”°6€7/32D3<25- (21-11)
We note also that 6ys W GH* = e27°q, GE™* = 0,
so that we can write Gy = u*q,D"*, (21-12)

where D”* is not a polynomial in the coeflicients in (21-1), but a #-invariant rational func-
tion of them, like D} in § 15, to which it plays a very comparable role.

Of course, the homogeneous parametrization (21-1) still represents the same branch if
the three series are all multiplied by any one series, with non-vanishing constant term ¢ say;
and the power series for x, y obtained by substituting from (21-1) in (21-2) are unchanged.
Any homogeneous ¢-invariant F*, of degree % in (ug, ...,u%_,) and in (g,4, ..., ¢,,-,) and of
degree £ in (Dyy, ..., Dyy,) is therefore unchanged by this multiplication, except that it is
obviously multipied by ¢, where m = 3(h-+k); and the expression for the corresponding
affine ¢-invariant F is F — F*/(u?)m,

since the right-hand member must be homogeneous of degree zero. This applies as well
to the #-invariants of singular as of non-singular branches. We shall call m the homogeneous
degree of F* (or F); it satisfies, if s denotes the weight (except of course for u*)

s<m<2s

with m = 2s only in the case of q,, m = s only in that of D*.

22. PARAMETRIZATION OF W, ,

We can now obtain the parametrization of W, from that of W, , by the following pro-
cedure. We first substitute for each of the #-invariant monomials in the parametrization of
W, ,itsvalue in terms of the coefficientsin (21-1), as found in thelast section. Each monomial

61 Vou. 254. A.
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then becomes a fraction, whose numerator is a monomial in the homogencous f-invariants
just found, and whose denominator is a power of u®; and the highest power is (u?)3" 1,
in the monomials arising from those in (a, b) only, since all the monomials have the same
weight 1(3"—1), and only these have homogeneous degree as high as twice their weight.
Thus, multiplying throughout by (u#)%, we obtain a set of monomials in the homogeneous
t-invariants, in which the lowest exponent of u? is 1. These are of course certain com-
ponents of a well-defined set of t-invariant tensors, namely, those components in which all
the contravariant indices are z and all the covariant indices x or y; and adjoining all the
remaining components of these tensors we obtain an enlarged set of monomials which
provide the parametrization of W, .

Thus for Wk, from the monomials a, b which parametrize the line I#; ; we obtain by
direct substitution the fractions q,/(u?)?, —q,/(u?)?; multiplying by (u?)® we have u*q,,
—u?q,; and adjoining the remaining components of the tensor u*q, we have the familiar
parametrization of w-V = W¥, in the form

«=ueq, (X2=0). (22-1)
Again, from the monomials

aD, bD, a* a’b, a?b? ab3, b*
in the parametrization of I¥; , we obtain by direct substitution

qD qD 9 499 9*a? diq, qi

W) (W) (W) (@)» () (w)» (v

(apart from sign) ; and multiplying by (u?)° these become

(v9)*q,D, (w)*q.,D, vy uviq.qj viqiq;, uv'giq, uvq:
Adjoining the remaining components of these tensors we have what is in effect Study’s
and Gherardelli’s parametrization of W, ,, namely

Xg&ﬁyﬁ = uduﬁu)'ul?qu*’ YoecﬁyB = ueqzxqﬁq'yqzb (222)
satisfying of course the linear identities
Xgbrd = 0, chﬂw =0

in consequence of the first identity in (21-8). Treating in the same way the parametriza-
tion (a’, b’, 0, 0, 0, 0, 0) of the sequences of type 2 (cuspidal branches) on I, , we have

!
Xt =u'*u'fu'vu'?q;, Y, =0,

a,

and putting D* = 0 for sequences of type 2 (inflected branches) we have
Xepre =0, Y =u°q,q,q9,q;

as the parametrizations of the loci of images on W, of sequences of these two special types,
the only ones that arise for n = 3. We shall denote these loci on W, , by ¥, ¥5; and we shall
use W with the corresponding suffixes to denote the locus of images on W*, of sequences of
any special type. W, isa w* b, and W5 a w'™* and W, , is generated by lines joining corre-
sponding points of these two threefolds. We note in passing that this is projectively indentical
with the locus ®g on W; 4, the threefolds V', and W5 corresponding to @4 and Dy,
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respectively; and that this is precisely what we should expect, as a first dilation applied
to the set of all sequences P P,P,P; of type (23) (including the two more special cases of
this) with origin P, gives us just the set of all sequences P{" P{P P{V in the plane mapping the
first neighbourhood of P, and that if the original sequence is of type (23) 8 or (23), the
dilated sequence will be of type 2 or 2, respectively.

Turning now to the parametrization of W, ; we start from the monomials

a>~biDG, a’bDG,, a®biG, a®bG,,
al-ibD4,  a*-biD3, a’-bD?, alo~bD, ald-ibi
which on direct substitution give the fractions (apart from sign)

qxqg lD*G*Z qx 5 ZD*G*Z q;qg'—ZG;kZ q;q‘g_lG;“Z

(uz)lg ""’ (uz)lg ’ (uz)zz' ’ (uz)ZZ H

qqu D*4 qZ q4 lD*3 qq7 z‘D*Z q;qlllO‘lD* qiqj}:‘}—i.

(uz)M R (uz)l7 ’ (uz)ZO o ‘A('uz)zs ’ (uz)ZS’

multiplying all these by (u#)?” and adjoining all the remaining components of each tensor,

we obtain the following set of monomials, which we shall take for the parametrization
of Wik,
Xpgey =un...unqy ... q, D*G}7,

Xocl.‘.....ozg,,g —u% .. u% qﬁ1 qﬁsGTs“V,
Yo =un .. umq,D*,
Yioge =un..uqy ... q, D%, .
Vg = u .. 07y, ... q;, DY,
Yiog =un. . unqy ... q,, D%

Yi 5= Ut ... Agyy ’

"The proof that this does indeed furnish a parametrization of W, is precisely similar to
that which would serve for the derivation of any W, from I} ,, and is as follows.

In the first place, the co-ordinates (22-3) are all of the same weight, 13, and of the same
homogeneous degree, 27. Thus every simple branch (21-1) has a unique image point in
the space in which (22-3) are homogeneous co-ordinates; and thisis the same for all branches
through the same free sequence PP, P,P;, and can thus be regarded as an image point for
the sequence.

Now the co-ordinates (22-3) satisfy a good many linear identities: in the first place, by
the top line of (21-8), all the expressions obtained by contracting any covariant with any
contravariant index in any one of the seven co-ordinate tensors vanish; there are also many
alternating relations; as well as those that express the symmetry of each of these tensorsin
its contravariant « indices, and also in its covariant £ indices, we have by the bottom line
of (21-8)

Conr AR = Y iee PO XRIRY = —2Y )
Xoc /3's ’)/ — Yoc, '/9 o> 6/?88KX551,'.‘..;§¢£,3/ — —QY“':"%sYK-f

1++-P7

(22-4)
acsy;c

61-2
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The image points of all sequences with origin at a generic point (£, 7, 1) satisfy a number of
linear equations, analogous to (14:12), in which the coefficients are monomials in (§,7),
expressing all co-ordinates of which any of the « indices are x or y in terms of those in which
all the « indices are z. All the co-ordinates of the image point of a sequence with origin at
(€,9,1) are in fact expressible linearly (with coeflicients rational in (,7)) in terms of those
in which all the contravariant indices are z and all the covariant indices x or y; for when
those with all combinations of « indices (but still with y = z for the X co-ordinates, and with
all covariant indices x or y) have been found from these (£, 7) equations, those with y = x,y
and with the same covariant indices as before are given by the two right-hand equations
(22-4), and finally those in which any covariant indices are z by the contraction identities.

This means of course that the images of sequences with a given origin P, all lie in a subspace
of that in which (22-3) are the homogeneous co-ordinates, the equations of this subspace
being just those (with coefficients involving the co-ordinates of P;) that express the re-
maining co-ordinates (22-3) in terms of those in which all contravariant indices are z and
all covariant indices x or y; these latter are accordingly a co-ordinate system in the sub-
space. T'wo such subspaces corresponding to different origins P, have no point in common,
as all the co-ordinates involve u%, and thus no image point of a free sequence with one origin
coincides with any image point of a free sequence with any other origin. But for any given
origin, the co-ordinates in which all contravariant indices are z and all covariant indices
x or y are precisely those which are first obtained, as proportional to the monomials in the
affine t-invariants that parametrize I¥; ,; the locus of images obtained above of sequences
with a given origin P, is thus no other than I¥; ,; we shall call it W ,(P,).

The algebraic variety of which (22-3) gives a generic point is thus generated by an co?
congruence {I¥, 5(Py)}; every point of the variety lies on one and only one member of the
congruence, and is, as such, the image of a sequence with origin at the corresponding point
P,; and conversely every sequence in the plane has a well-defined image on the variety,
on the W, ;(P;) corresponding to its origin Py. This is true of the unfree sequences as well as
the free, for we have seen that an unfree sequence, like a free one, hasa well-defined image
point on I}, ;, and hence on the appropriate W, 4(P), i.e. on the variety we have constructed,
which is thus a proper model of Wf,.

The co-ordinates of the image point of an unfree sequence have of course to be found in
terms of the invariants of an appropriate singular branch. The procedure is exactly the
same as before; we take the co-ordinates (in terms of the affine parametrization) of the
image of the branch on W, ;, substitute for these their value in terms of the homogeneous
parametrization, multiply by a power of u?, and so obtain those co-ordinates of the image
point in which all contravariant indices are z and all covariant indices x or y. The rest are
found as before from the equations of the ambient subspace of the appropriate ¥, ;(P;).
Using the ¢-invariants of the singular branches defined in § 21, we find the following image
points for the various types of unfree sequence on W%,

Type 2. Cuspidal branch, species 1, (8-3), (21-9), 10:

Xpeogoi = —un . usqp ... qp,

Y%""“" =y« .., uousq'ﬁD’*2, (22-5)

all other co-ordinates = 0.
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Type 3. Cuspidal branch, species 2, (8-6), (21:9,11,12):
X =us .. uoqy ... qz D*D™,

Xjgoge =un .. u%qy ... ¢z D™, (22-6)
all other co-ordinates = 0.
Type 2. Specialization of the generic point, with D* = 0, which makes G}* = u*q;D{;:

Xgogoge = u . umgp, ... 4y Diy, |

Yzl"‘ﬂlii = Uy ... gy (22-7)
all other co-ordinates = 0.

Type (23). Cubic branch, species 1, (8-4), (21-9):

Ygueom — g umnq)
/ ) 4 (22-8)
all other co-ordinates = 0.

Type 2, 3. Cubic branch, species 2, (8:7), (21-9):

Xgana — o uooby, ...
BB fo I qﬁfi’} (22.9)

all other co-ordinates = 0.

Type 2, 3. Specialization of (22-6), with D'* == 0:

(22:10)

Xppogogo =u™ .. u“fiq},l q;fﬁ,
all other co-ordinates = 0.

Type 23. Specialization of the generic point, with D* = G}* = 0:
Yﬁxn-ﬂw = uaqﬁ:l TR V%) (22.11)
all other co-ordinates = 0.

We have included the separate parametrization of the free sequences of types 2, 23, to
show the symmetry of the system. We see from the above parametrizations that the three-
fold loci, Wips), Wy, 3, 5, 3, ¥55 are respectively w* b, w® 6, w69, and w-19; and that the
fourfold loci ¥, ¥, ¥, are generated by the line systems joining corresponding points in
consecutive pairs of these threefolds.

In exactly the same way, from (7-8), substituting the expressions for all the #-invariants
in terms of the coeflicients in (21-1) multiplying by (u?)?®!, and adjoining all remaining
components of the resulting tensors, we obtain the following set of monomials as the para-
metrization of Wj¥,. As they are the components of 70 different tensors, with from 37 to
43 indices each, we do not write them in full as in (22-3), but adopt the notation ( ),
containing a tensor, for the general monomial of degree ¢ in its components, which in the
tuller notation would be denoted by writing the tensor ¢ times with different indeterminate
indices. With this convention the monomials parametrizing W, are

(ua)22+5k—3j(qﬂ)10—4k+3jD*5+3k—j(G'>§ac)l—k (FEN (k= 0,155 = 0,...,5+3k),
(u)25+5k=3) () 134437 D*5+3k=1 (Ga) 1k (D7) (k= 0,157 =0, ..., 5-+3k), (22:12)
(u%)20+5k-3 (Qp) 17+ 37 D* 143k (Ger) 4k (k=0,...,4;5=0,...,1—3k).
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The symmetry between the degrees in (u”) and (q,) of the various tensors, which is obvious
in (221, 2, 3) is not so obvious in this form, but it becomes clear if we tabulate them as
follows (in each pair the exponent of (u*) is written above, and that of (q,) below; each line
gives the pairs of exponents for different values of j and the values of £ shown at the
beginning.

Monomials containing I##7 or J57:

?3 ?? 22 19 16 13 ——
. 3 16 19 22 25
I 6 10 29 s o8 with 17,
33 30 27 24 21 18 15 12 0 i g
L 6 9 12 15 18 21 24 27 30 B
30 27 24 21 18 15 12 9 6 |
o 12 15 18 21 24 27 30 33 W LET

Monomials containing only (u®), (q,), D*, (G§?):

r o 20 17 s (231)
17 20
P 25 22 19 16 13
13 16 19 22 25
P 30 27 24 21 18 15 12 9
9 12 15 18 21 24 27 30
P 35 32 29 26 23 20 17 14 11 8 5
5 8 11 14 17 20 23 36 39 32 35
L, %037 34 31 28 25 22 19 16 13 10 7 4 1

1 4 7 10 13 16 19 22 25 28 31 34 37 40

It is clear that we could go on this way indefinitely, and obtain a parametrization of
W, , for all n, but of course the complication of the results we should obtain increases very
rapidly.

23. THE DUAL TRANSFORMATION

It is obvious, as the co-ordinates of the generic point of W, are all the components of
a set of tensors, that every collineation in the plane induces a self-collineation on W,
What is far less obvious, and what we shall now prove, is that every projective duality in the
plane, i.e. every point-line correspondence in which the co-ordinates of the image line of
a point are linear functions of those of the point, and conversely, likewise induces a self-
collineation on W, .

It is sufficient to consider the duality in which a point and line correspond both ways
if and only if they have the same co-ordinates. Any algebroid branch has a well-defined
dual branch, the co-ordinates of whose generic point are those of the tangent at the generic
point of the given branch. If the parametric equations of the given branch are u* = f*(¢)
those of the dual branch can be written

Ut =€y, | Ae) @(;t(t)

>
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(we shall throughout indicate quantities belonging to the dual branch by bars over the

letters). If the functions f*(¢) are the power series (21-1), this gives a similar expansion for

the dual branch
@ = g A AR L
where

uf = (i+1) 9a0,i+ D+ (1—1) qa(l,i)+(i“"3) Qut2,i-0F - T aij, j+ O 244 j42) (23-1)

according as ¢ = 2j or ¢ = 2j+ 1. Thus in order to determine the series for z* as far as the
terms in ", we need those in the series for ¥* as far as 1. Nevertheless, for the generic
branch, all the principal #invariants of rank <7 of the dual branch are completely deter-
mined by the series for the given branch as far as termsin #7; for we recall that the coefficients
u% only enter into the f-invariants of rank 7 by their presence in the determinant D, ; and
the corresponding determinant for the dual branch is

o 2qu0ps (1) 90, n+1) (n—1) qapt--- |
D, = | qyonr 294025 (2F1) @y, nen+(—1) g+ .-
9201y 2qz(02)3 (72 + 1) 9200, n+ 1)+ (n - l) QZ(ln)_I— e

and as U Gato) = U§9u009 = U5 qu0,nsn = 0

the first terms in the last column of the determinant are a linear combination of the other
two columns, so that the value of D, and therefore of any ¢-invariant of rank n > 1 of
the dual branch, is a form in (4§, ...,4%) only. In particular

i*=q, q,=2uD* D*=2D*2 (23-2)

But since D* = 0 is the condition for the branch to be either singular or inflected, this
means that if the given branch is neither singular nor inflected, the dual branch is likewise
neither singular nor inflected, and in this case the sequence P;...P, on the one uniquely
determine the sequence P, ... P, on the other, i.e. if Py... P, is any free sequence with P,P, P,
not collinear, there is a uniquely defined similar sequence P,...P, such that all simple
branches through the one have as their duals simple branches through the other. This
sequence we shall call the dual of the given one.

We cannot immediately say the same thing of a singular or an inflected branch, since the
dual of an inflected branch is singular, and that of a singular branch either singular or
inflected, and of course the rank of a #-invariant of a singular branch is not very simply
related to the suffixes of the coefficients which occur in it. There is, however, one type of
sequence for which this can be proved at this stage, and that is what we may call the
sequences of maximum condition, for which the proximity conditions, or conditions that
some points P,, ... are collinear with P)P;, uniquely determine all the remaining points
given PPy, i.e. for which all the indices 2 ... n are present in the condition symbol, with or
without bars or brackets.

If the first ¢, whose components are not all zero is ¢,,), 7 is the order of the branch;
and if the first Df;; which is not zero is D§y, . ¢, s is called its class; and it is familiar that the
dual branch is of order s and class r. If 7, s are mutually prime, and r+s = ar-+b, with
a>=2,ie.r<s,and b <r, thenP,... P, are collinear, and all of multiplicity » on the branch
except P,, which is of multiplicity 4, whereas on the dual branch P, is of multiplicity s, and
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P, ... P, all proximate to it and all of multiplicity r except P, which is of multiplicity 4; and
as on both branchesP,_,, P, (P,_,,P,) have multiplicities 7, a, which are mutually prime, the
succeeding points on the two branches have the same multiplicities and proximity relations,
and are all satellites, as far as a certain point P,, which is simple, and thereafter all points of

both branches are simple and free. P,...P, P,...P, are thus both sequences of maximum

condition, whose type symbols begin with (2...4a), 2...a, respectively, and are otherwise
the same.

It follows that every sequence P,...P, of maximum condition determines uniquely a
second sequence P ... P,, likewise of maximum condition, such that the dual of every branch
through the one passes through the other; each of these sequences will be called the dual
of the other.

Since the generic sequence Py ... P, has a unique dual sequence the relation between the
two is mapped by a birational transformation.7” of W, into itself (which for the particular
duality in the plane that we are considering is involutory). The base locus of this, i.e. locus
of points whose image is not unique, must lic wholly on the ¥ loci, since every point which
is on none of these has a unique image, and must consist of the whole of some one or more of
these, possibly with different base multiplicities. But as every sequence of maximum con-
dition likewise has a unique image, the base locus of 7~ cannot contain any of the ¥ loci
of maximum condition; and as every ¥ locus contains one or more of those of maximum
condition, there is no base locus at all.  is thus one-one without exception, and every
sequence P, ... P, defines a unique dual sequence P, ... P,,.

Now W, has on it two nets of primals |I'|, [A], given by linear equations in u%, g,
respectively, each I' being the locus of images of sequences with origin on a given line, and
each A of sequences whose tangents pass through a given point. The intersection of two
I’s is an n-fold € = W, ,(P;), locus of images of sequences with a given origin, and the
intersection of two A’s is an n-fold D, locus of images of sequences with a given tangent.
The intersection of €, D is in general empty, but if the point corresponding to € lies in the
line corresponding to ® itis a W, ,_,(P;) on the I, , €. These W, ,_,’s on W3, we shall
denote by W. W, isin fact a fibre space of the W’s over W, = w®: Y, the images in the
congruence {W} of F, G, f, g on w®: D being I, A, €, D.

J obviously interchanges |I'| with |A|, and {€} with {D}, and transforms each I/ into
a W—linearly, since the base on ¥, , , is so unsymmetrical that it obviously has no linear
system on it with the same properties as the prime sections, except the prime sections. The
linear system on € which is transformed into the prime sections of © thus traces the prime
sections on each of the pencil || on €, and so can differ from the prime sections of € at
most by a multiple of |IW|. But if the prime sections of D were the images of those of €
together with |2 |, the image on D of the line /; on €, unisecant to ||, would be a curve
of degree 4+ 1, and there would be no curve on D, unisecant to ||, of lower order than
this. Now one tensor in the parametrization of W, is, in the notation of (22-12)

(u)! (qﬂ)%(?.”—l)’

and as the collinearity of P, ... P, is given by the vanishing of all the ¢-invariants of rank < »
except u®, b,, W5 is parametrized by this tensor only, all the other co-ordinates vanishing.
Putting constant values of q P into this tensor we see that ¥5—; traces on ® a line unisecant
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to the pencil |W|; thus £ = 0, D is a projective image of €, and .7 maps them projectively
on each other.

Hence in the same way, the mapping system of  must differ from the prime sections of
W, by something which has zero intersection with €, and since 4 is involutory, this
system is also the mapping system for.7 ~1, and must similarly differ from the prime sections
by something having zero intersection with ®. But as on w(:? there is no linear system
except |0| having no intersection with either {f} or {g}, there is none on W3, having zero
intersection with both |€| and |D|. Thus the mapping system of 7~ does not differ from the
prime sections, i.e.7 is a collineation.

This can be verified easily in the casesn = 1,2, 3. From (23-1) we have, as well as (23-2),

G0 = UG D3 +ui Do, Doz = 4D, Diis,

so that G*f — —4D*2G}e, (23-3)
Substituting from (23-2) in (22-1) we have

Xy = 2D* X7
n (22-2) Xabrd — 9D*3Y ¢y, Yig 5 = 24DH*3 XY,

and from (232, 3) in (22-3)
Xgi-toy — —QTD¥0 Xhfod Fauany — — IOD*9 Xhifod

Ol1eeOlgy Y Opeee0lsy YD

YOH s = 2D*9Yoc1 o132 Y eeBra 213D*9Yﬂ1 /ﬁx
YOC[ O(m — 24D*9Yﬂ1 ﬁ R fol 0‘4 — QIOD*QYégl o/‘)’xo
10 1 4

Yocl o= 27D*9Yf.' 0/377,

as the effects of the transformation.” on W, W5, Wk,. Itisclear that the effect on W,
for all n is of the same kind; it merely interchanges (with a multiplier D*¥™" and some
numerical coefficients) the co-ordinate tensors by pairs, raising all the covariant and
lowering all the contravariant indices.

This enables us to obtain the values of L/, j;‘,“"ﬁ without substitution in the lengthy
expressions (21+6). On looking at the table (22 13) of the exponents of u”, g, in the para-
metrization of W, we see that two pairs of co-ordinate tensors which must be interchanged
in this way are

() (q) DG (JFF)Y, () (q,) (GF*)! ()Y,
(u*)3(q,) DEIF),  (u*)®(q,) (Lf)!
and this can only be the case if
Lfpr = —4D*2J%80, j;;"g‘i’ = —SD*E L%/,

(The numerical coefficients —4, —8 follow from the fact that both the unbarred and
barred ¢-invariants satisfy the identity (21-7).)

24. TuE ¥ LocI on W5,

The relationship between the various ¥ loci on W3, can best be studied by considering
their traces on the general W, which of course are the same as the traces on' W, ,_,(P,) of
the corresponding ® loci on ¥, ,,, since the trace of each " locus on € is the corresponding

62 Vor. 254. A.
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® locus on this W, ,. The investigation of § 11 are applicable here. The ' loci of maximum
condition, 2"~! in number, each trace a point on each W, and each is consequently a w7
for some values of (¢,7), and is represented by the vanishing of all the co-ordinates in the
parametrization except those of one tensor, with ¢ contravariant and j covariant indices,
which for the corresponding singular branch reduces to (u'*)?(q3)/. We have seen in § 11
how the points traced by these on W are arranged in a sequence, joined consecutively by
lines which are the traces of ruled ® surfaces of W, ,, and hence of four-dimensional ¥ loci
of W;¥,; and it is obvious that the duality transformation.7” of the last section simply turns
the whole sequence end-to-end, and in fact interchanges the right and left halves of cach of
figures 2 to 4, and the other figures that could be constructed in the same way for higher
values of 7, in a mirror reflexion. Incidentally we see that, as was established directly in
the last section for sequences of maximum condition, so quite generally the condition
symbols of two sequences dual to each other are interchanged, by interchanging (2 ... a)

with 2... q at the beginning, and leaving the rest unaltered.

If on each of these w7’s we denote the images of F/, G, f, g by F, G, f, g with the appro-
priate suffixes, we see that I', A, €, D trace the corresponding F, G, f, g on each of them, and
in particular that the curves f (of order j) are the corresponding @ curves on €. The orders
of these curves have been found for #» < 5 in §11, which gives us the values of j; those of
are of course the same sequence of integersin the reverse order. We have in fact seen already
from the detailed parametrization that the two ¥ loci on W, are w®* U, w14, and that the
four threefold ¥ loci on Wi, are w3 D, w®: 6 w6 9 wl-19; and from the orders of the
® curves on W, 4, found in § 11, we find the following values of 7, j for W,

Condition: (234) (23)4 2,3,4 2(34) 2(34) 2,3,4 23,4 937
i 40 35 31 24 21 13 8 1
VE 1 8 13 21 24 31 35 40

and it is not hard to identify the co-ordinate tensors in (22-12) that have the right number
of indices; they are (in the above order)

(u)40 (q) 1 D*13, ()33 ()6 D*8 (Jk)],
(u%)28 (q,)D*5 (G4 (J)1, (%) (q,) 7 D*(GE%)*,
(U9)17 ()2 (GF*)4,  (u)10(q ;)2 (G3=)! (L)1,
(u?)®(a,)* (L), (u)! (q,)*
Similarly the values of j for the sixteen three-dimensional ¥ loci on W are
1, 10, 17, 29, 34, 47, 55, 66, 69, 79, 86, 97, 101, 110, 115, 121,

and those of ¢ are the same in the reverse order.

Each of the four-dimensional ¥ loci traces either a line or a curve on ¥/, joining the point
traces of two of the three-dimensional W loci; it is therefore generated by lines or curves
joining corresponding points of these, say w = w®), w’ = w¢/). Now the theory of the
fourfold loci BENE>) generated by lines joining the corresponding points of w — W,
w’ = w*hi*h js very simple; defining s, 1, S, 7" as in §19 and denoting the generating
lines by p, using (19-5), the whole intersection table is easily found (table 7), all the inter-
sections being obvious except the sections by w, w’ of themselves and their subvarieties,
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and these follow from the fact that the corresponding sections by w’, w, respectively, are
zero, together with the linear identity between the four columns. All the intersections depend
only on £, k and not at all on 7, j; in fact it is clear that for any ¢, j, on the projective model of
the system |w+ (i+4) s+ (j+£) t], w, W’ appear as w®?, w*mi+h, respectively. Further,
on that of the system |mw + (i+mhk) s+ (j+mk) t| w, W’ appear as wé), w*+mhitmh and
{p} as a congruence of curves of order m. Conversely, any fourfold generated by an 0o®
congruence of rational curves to which a w®” and a w7 (not intersecting each other)
are unisecant is of this kind, since it contains surfaces F generated by a pencil in the con-
gruence with unisecant curves f, f’, whose difference is accordingly a multiple of the
congruence {p}, and similarly for the curves g, g; this establishes the values of 4, k and the
linear identity between the columns of the intersection table. We note that 7' —i, j'— are

TABLE 7

w [ t w' =w-+hs+At
w —hF—kG F G 0
5 F S S+T F' =F+(h+k) S+kT
t G S+ T T G' =G+hS+(h+k) T
w' 0 F’ G’ hF' + kG’
F —(h+k) f—kg ¥a S+eg 0
G —hf—(h+k) g Sf+g g 0
s Vi 0 » S =f+kp
T g p 0 g =g+h
F’ 0 S f'+g (h+k) f'+ kg’
G’ 0 S+’ g’ W'+ (h+k) g’
b -k 0 1 0
g —h 1 0 0
p 1 0 0 1
f' 0 0 1 k
g’ 0 1 0 h

always multiples of m (the quotients being %, £) and that on the minimum order model
w, w’ appear asw: D, w+LA+Dif h, k are both positive, but as w® =D, w- #Dif 4 is negative
and k positive; a qualitative difference between the two cases is that in the former w is
unique but w’ varies in a linear system, whereas in the latter both are unique. The latter
case is that which we chiefly encounter in this work, but we note that the locus @, ; on
Wi shash = 1, k = 3; @y is unique, but @, 5 5 is transformed into a system of equivalent
loci by the collineations induced by regular transformations in ;.

All the fourfold ¥ loci on W, are generated in this way; we can tabulate the values of
m, i, J, i, j', b, k for all those on Wi, W5, Wi from the information in §11 as given in
table 8.

Comparing the values of , & in the last column, we see that for each value of n, the con-
ditions which include z in the symbol (i.e. for which P, is a satellite) give V" loci which are
birationally equivalent to those on I, ,_ corresponding to the same symbol with » omitted
(whether it is in a bracket or not). This is to be expected, as every sequence Py...P,_; of
the given type determines a unique sequence Fy ... P, by adding the point P, in the satellite
position (or in either of the two satellite positions if P,_, is itself a satellite).

Moreover, on Wi, ¥y and ¥y , being birational images of each other (and of Y
on Wi, and of W, itself) we see from figure 4 that ¥y is generated by lines joining

62-2
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corresponding points of gy, ' 4. Several of the fivefold ¥'loci on W5, and quite a lot on
Wk, are generated in this way; on Wi Wy, ¥,y 4 5 are birationally equivalent (with
h,k = —4,5) and ', , is generated by lines joining corresponding points; and ¥ , simi-
larly from Wsys), W5 4 5. Moreover Wiy, Wips, Vs 45 and Wiy are all birationally
equivalent (with 4, k£ = —3, 3) and the lines joining their corresponding points consecutively
generate Wy, ¥y 5, Wy 4. On Wi we see in figure 4 that Wiz, Vasse V95,6 Yoo
W s6e» Vs, 4.5 6 Vsuse Tause are all birationally equivalent, and the lines joining corre-
sponding points consecutively generate Wiyys), Yage Yns Tioer Vs a5 ¥ a6 Viuss

TABLE 8
condition m 1 J i’ g’ h k
Wi, 2 1 13 1 9 6 — 4 5
3 1 9 6 6 9 -3 3
2 1 6 9 1 13 — 5 4
Wi, 4 (23) 1 40 1 35 8 ~ 5 7
2,4 1 35 8 31 13 - 4 5
2,3 1 31 13 24 21 - 17 8
(34) 1 24 21 21 24 ~- 3 3
2,3 1 21 24 13 31 - 8 7
2,4 1 13 31 8 35 -5 4
23 1 8 35 1 40 -7 5
3,4 6 31 13 13 31 - 3 3
Wi (234) 1 121 1 115 10 -6 9
(23)5 1 115 10 110 17 ~ 5 7
(23)4 1 110 17 101 29 -9 12
2(45) 1 101 29 97 34 — 4 5
2,3,4 1 97 34 86 47 —-11 13
2,3,5 1 86 47 79 55 — 17 8
2(34) 1 79 55 69 66 ~10 11
(345) 1 69 66 66 69 - 3 3
9(34) 1 66 69 55 79 —11 10
2,3,5 1 55 79 47 86 — 8 7
2.3, 4 1 47 86 34 97 ~13 11
2(45) 1 34 97 29 101 ~ 5 4
23,4 1 29 101 17 110 —12 9
23,5 1 17 110 10 115 - 17 5
234 1 10 115 1 121 -9 6
2,4,5 6 110 17 86 47 — 4 5
24,5 6 47 86 17 110 — 5 4
(34)5 8 79 55 55 79 ~ 3 3
3,4,5 13 86 47 47 86 - 3 3
3(45) 21 97 34 34 97 - 3 3

and there are ten more similar structures, five on Y, and five on W5; we have also Ws 5.6
generated by a congruence of c0* sextic curves, the images of ®, ; on each of the oo* sub-
system of {I#; 3(P5)} that generates W's, which join corresponding points of Wgys 6 s 4 5.6

There are other fivefold 1" loci generated by an co* line or curve congruence, to which
one of the fourfold ¥ loci is unisecant and containing two 00® subsystems (meeting the
unisecant fourfold in its w, w’) which generate two other fourfold ‘" loci; obvious examples
are Wy, W3 on W3, and the many which appear in figures 3 and 4 as ruled surfaces having
a minimum directrix line and two generators among the lines of the figure; and we have
also for instance ¥, 5 on Wy, generated by an co* congruence of sextic curves, of which

two c03 subsystems generate V', 4 5, W5 , 5. Of these there is little to be said except that
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where a second unisecant fourfold, not meeting the first, is not apparent, we cannot assume
its existence, though many of the properties of the fivefold locus are the same as if it did
exist. For instance, it might perhaps be tempting to suppose that on the fivefold locus V'
on W3,, which is generated by co* lines unisecant to ¥ ,, including two co® subsystems
generating ¥, ,, ¥ ,, there might be a second fourfold locus, unisecant to the generating
lines, birationally equivalent to ¥, ,, generated by co® rational curves of order nine, joining
corresponding points of Wiz, V53 4; ¥, would then be generated in the same way as V',
by the lines joining corresponding points of these birationally equivalent fourfolds, and the
generating curves of the second fourfold would be a second directrix curve of each of the
ruled surfaces (of order 15) traced on W', by {I#'}, of which one appears as the trace of ',
in figure 2. All the loci are of the orders one would expect if this were so, and the equi-
valences on ¥, and its sub ¥ loci which one would deduce from it in fact hold. All this,
however, is not the case; W', on W, is a birational model of W,, and we shall see in the
next section that there is no primal on W,, unisecant to its generating lines and not
meeting V.

Of the Y loci of more than five dimensions it is not easy to say anything descriptive
without more detailed study, except that all of them are fibre spaces of lines over those of
lower dimensions, or fibre spaces of rational curves which are birational images of fibre
spaces of lines. Ifin fact W is any ¥ locus on W5, there is at least one on W3¥, | which is
a birational image of ¥, whose condition symbol is obtained by adding z+1 at the end of
that of ¥'; and if the latter contains z, we can obtain two such images by adding n+1 either
bracketed or unbracketed ; and the W locus on Wi, | which has the same condition symbol
as V' is generated by lines /., unisecant to this birational image of ¥, or joining corre-
sponding points of its two images.

25. BASE AND INTERSECTION THEORY ON Wi,

Wi, being BH DAL jts intersection and equivalence relations are those tabulated in
the last section with £,k = —3, 3. The whole theory of this fourfold was found by Gherar-
delli, using only the known properties of w® and the relation

W, —3I'=%¥3—-3A (25:1)

which is w+As = w’—kt of the last section, and which he obtained from the fact that if
a plane curve of order z and class m has £ cusps and ¢ inflexions, £—3n = :—3m. (25-1) is
valid on every W¥,, n = 2;since W, is a fibre space oflines over W, _,, and the images in
this line congruence of I', A, ¥, W5 on W, _, are the similarly defined loci on W¥,. We
shall in every case obtain a more symmetrical base by using, in place of either ¥, or W5,

the i i
e linear system ® = ¥, +3A = Wy +3T.

We take then on W, I', A, ® as a base for primals, I = F,, J = G5, S, T as a base for
surfaces, and [, = f,, | = g3, [, = p as a base for curves; where S, T are the ruled quintic
W, »(Py) and its dual image (i.e. its transform under.7” or the collineation induced by any
other duality in the plane), which we called €, D in the general case; and 7, J are surfaces
ruled in {/y}, {/,}, both of order 9, and correspond to the similarly named surfaces on the
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locus @3 on W} 3, which we recall is a projective image of W,. We have the following
equivalences:
‘P‘f: G)—SF, F§: I14-3T, fi = lO“i'SIZJ

and the intersection table (table 9).

We notice that on every W, as ¥, ,=w"D and Y5 = wl ™), where
m,, = %(3"—1), we have two c0? line systems {/,} = { fo..0}, {{i} = {gz}; the former con-
tains the unique line on each ¢, image of /, on W, ,, and the latter the corresponding line
on each D. Further, we have for i =2,...,n—1 the oo'*! line system {/;} generating
Wi 1. and theco™ ! line system {/,} generating W, itself; the subsystem of {/,} (¢ = 2, ..., n)
on each € or D being the image of {/} on W, ,, in particular {/,} contributes to each W the
unique line seen as a horizontal line in the upper centre of figures 2 to 4, and the vertical
linesin these figures are all in {/,}. We have also on each W, (n = 2) the surfaces [ = F, ),
J = G5, of order 3", ruled in {/}, {{,}, respectively.

(25-2)

OF
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TABLE 9
Wi Il A (¢} I=T+A+0 330
r N S+ T I+3(5+T) I+55+4T 54
A S+ 7T T J+3(S+T) J+4S+5T 54
0] I+3(S+T) J+3(5+T) 3(I+J)+9(5+T) 4(I+J)+15(S+T) 222
I Ly lo+1,+31, 3/, 50+ 1, + 3, 9
J Lo+, +3l, A 3, Lo+ 51+ 31, 9
S 0 A ly+3l, Iy + 41, 5
T L 0 [, +3l, 1, +3l, 5
IN 0 1 0 1 1
A 1 0 0 1 1
L, 0 0 1 1 1

Turning now specifically to W5;, as W, 3(P;) and its dual image are threefolds, we shall
denote them by ¢, d, rather than €, D. As Wy, is a fibre space of lines {/;} over W,, and
W, is unisecant to this congruence, every subvariety of W5, has on W, an image in {/,}
and another image on W, the latter being of course the intersection of the former with V's;;
and these two images of each element of a base (of all dimensions) on W, form together
a base of all dimensions on W,. These images are as follows:

image of in {l;} on ¥y image of in {/;} on ¥,

W;_‘z 2{‘3 ‘P’3 N C S3
T I T,

r r g

A A 13 N S, Sos

® 0 u I Ty 95,3
l w 2

1 Sy Iy 4

J t; Gs, 5 point ly point

The only new notation is it = ¥, 5+ 8t; = W5 5+ 33, the linear system traced by ® on V.
From (25-2) applied to {/;}
Y, =0-3A, t,=1t+3c, T,= T§+3W,1

(25-3)
s = 0—3T, & —s5,+30, Sy;=S,+3W.]
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From the geometry on ¥, ¥, ¥, using the values of 4, £ from table 8:

Wy 3 =u—3t;, Wey=u—3t;+4s,—5(t5+ 3c),} (25-4)
W5 3 =u—3s;, Wi =1u—35;—5(5,+3d)+4t;
and Flog =1, Gy =,
F2,3 = I+Sz+5(T§"‘3W)s G§,3 = J+5(S2+3W) +T’z‘,
F§,3 = Fz,3+3Tss Gz,a = Gi, 3—|—3S3, ! (25'5)
By = B3 — (S, 1-3W) +4T; Gy = Gy 3 +45,— (13+3W)
= [+ 3T;+ 915+ 12W, = J+98,+38;,+12IW.
Finally, from fys) = [, g55 = [,, using equivalences on the ruled surfaces S, 7"
f2,3 = lo+ 513, fi,3 = lo+3lz+5l3s fi:? = lo+312+913a} (25-6)
82,3~ [y + 51, 82,3 = Li+3ly+5l3, gy = 1,431,491,

Thus everything has been expressed in terms of base which we can take to consist of the
primals I', A, O, s, threefolds ¢, b, u, $,, t3, 85, t;, surfaces I, J, W, §,, T3, S5, T, and lines
ly, {1515, 5. Intheintersection table (Table 10) however, anumber of the entries are simplified
by writing F, 5, G; s in place of their values in terms of the base as given by (25-5).

As V', is a birational image of W§,, on which the lines [, /;, /, of the latter appear as the
sextic curves f, 3, &5 3, and the lines /,, it follows that W5 is the projective model of the
system 6(1'+A) 4 ® on Wi, i.e. its prime sections are traced on it by the similarly denoted
system on W, ; and if as usual we denote the prime sections of W, 5 by |1I|, this means that

II.Y, = 6(s;+1;) +u. (257)

On the other hand the residual section of W3 by a prime through W is compounded with
{l;}, and as it has one generator in common with each of §,, 73, and four with W,

M=T4+A+40+Y¥,. (25-8)

The intersection table is now easily written down. Most of the intersections with T', A, ®
are immediate consequences of the corresponding intersections on Wj,, applied either to
{l,} or to W;; the intersections of W' with itself and its subvarieties are most simply obtained
by cutting (25-8) by ¥ on both sides and comparing with (25-7), which gives

W W5 = 5(s3+1;) —3u,

which means that the virtual intersection of any subvariety of W5 with W, is the same as its
intersection with the virtual system of primals |[5(I'+ A) —30)|.

We could obtain a variety on which all the equivalences (25-3,...,8) and the inter-
section relations given in table 10 would be valid by taking, in an ambient skew to that of
Y, a second birational image F'* of IW,, on which the generators {/,} appear as quartic
curves {p*}, and ¥,, ¥3 as w13 D, w13, respectively, and joining corresponding points
of W5, ¥'* by lines. 1"* is the projective model of the system |I'+ A+ 4®] on Wi,; and by
the usual device of comparing the sections of the locus so generated by primes through ¥,
and through ¥'*, we find that

¥ — 5T+ A) +30-+F,
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1 I I 0 0 0 MN
1 1 g— 1 0 0 y
I I 0 0 0 I i
I 1 0 0 1 0 7
el f16+46+ 1Y fle1—%18—1g— Sie+4¢+1 0 g m,m
c1 f1e+%6+ 01— =g~ fle+4e+9 i 0 s
L f19+1Y f1e+h 0 0 1 %
L 19+9 fc+9 0 Vi 0 S
g Yy g i 0 0 M
Lz S6+4e+ 31+ 0 ¢ 7 16 +%¢+ fw r
L 16 +4e+ "1+ 31 0 ¢ S6+4e+17+% 7 I
F0g $Le1+ 56+ %D SL+Esp—" g~ CL+59)e+% L SL+% %)
F0C Cr6+EseT+5 %y SLy—Sg+ECg— Cr+is)e+t%y £L+5s t ts
$9% SLFT i+ me+E D ) ¢re Zr. L+ +me !
$95 LLASFLEMET Y N Lo tse ¢+t M8 oS ’s
T¥6°e CrL+E)er+ (' +E%)6 Cr+ie+ %+ p— CrL+i6+ (o + e CrL+E)e+5% Cr+8e+E% n
801 SL+4rF+mer €L L +me 0 M q
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TL6°€ 34+495+ @1 +I€T % g4+ (q+3)g : Q Q-+ \Y
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where of course I', A, @ stand here for the images of these primals on W, in the generating
line system. It is not immediately obvious that ¥, , is not in fact this fivefold variety, the
w3 D w139 on W* being Wy, ¥55. In the paper on W, ; already referred to, however,
I proved that there is on W, 5 no surface unisecant to the lines {/;} and not meeting ®;;
and it is clear that W*, if it existed on W,, would trace on each threefold ¢, d (images of
W, 5) precisely such a surface, namely $*, 7%, respectively. The virtual linear system ¥*
defined by (25-9) on W, has of course the properties of being unisecant to {/;} and having
zero intersection with W5; but it is merely virtual, and contains no actual primals.

TaBLE 11
image of in {l,} on ¥, image of in {l,} on ¥,
W W34 ¥, S %; Si4
* T; 0; T4
T T %4 Fij Sij Fij, 4
A A 2)4 Gij tlj ifs4
-9 9 u, w W, S(Pl) vy
Wy W Wy, 4 ; 3 7
ij if ijs 4
¢ ¢ % 8ij Ty 8ijr4
D D Da Ly 3 P34
u U, Us, 4 Iy W, o(Py) I
$i X, Si 4
ti 2), ti; 4 pOint l4 p()int

W, need not be dealt with at length, but it can be pointed out briefly how the same
methods can be applied to this case, and indeed to W§,,, when W5, has first been studied.
€, © are now fourfolds. We define on each of the ¥ primals (¥, ¥3, Vs, V) the fourfolds
X, 9 traced by I', A, the threefolds %, 1) traced by €, D, and the surface V traced by the three-
fold W, 4(P,); in each case distinguished by the suffix 2, 2, 3, 4 of the ¥ primal. Thus V;, /3
are subsystems of the family {}, ,(P,)} of ruled quintics and V3, ¥, are (on € or D) the surfaces
V, U of §12. We denote further the traces of ® on Wy, ¥y, Wigg, V5 4 by Us, Uy, Uy, Uy 4
Every subvariety of W§, has an image in {/,}, and one on ¥,, which is unisecant to {/,}
and a birational image of W ,; these images are given in table 11, where ¢ denotes any one
of the condition symbols 2, 2, 3, and ¢/ any one of the symbols (23), 2,3, 2,3, 23; and p; ,
is the sextic generating curve of 5 , (the only one of the fourfold " loci not generated by
lines) which appears as the trace of @; , in figure 2, and (on either € or D) is the curve on
W, 4 called £ in § 12.

From the geometry on the various ruled surfaces we express all the curves f, g, and p; 4
in terms of ly, ;. [,, I3, I;; and from that on the fourfold ¥ loci we express all the surfaces
F, G in terms of any one of each, say I = F,3, J = Gz33, which are those of lowest order, 81,
and the surfaces S, T°; and also all the threefold ¥ loci in terms of either 1134 or 1t; 4 and the
threefolds s, t. Further, since W3y, Vs 4 are birational models of W3, on which the images
of ly, 1;, I, are of degrees 21, 21, 1, and 13, 13, 6, respectively, they are the projective models
of the linear systems |21(I'+A) + ®], |13(I'+ A) + 60|, respectively, from which the prime
sections of any of their subvarieties can be obtained ; and by comparing sections by primes
through W5y, Vs 4 respectively, either of them, or any of its subvarieties, can be expressed
in terms of the other and its subvarieties and the subvarieties of ¥y ruled in {/,}. These
relations, together with those corresponding to (24-3,4, 5, 6) in {/,} and on ¥, enable us

63 Vor. 254. A.
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to express all the subvarieties of I¥, , that have been defined in terms of a base consisting
of five primals, eleven fourfolds, fourteen threefolds, eleven surfaces, and five curves, which
can conveniently be taken to be
I, A 0, ¥, Y;
¢, 9 X, 2)5: xS: 2)39 %4, 2)4: 113, 114, lI)’(34);

¥» Dz X3 D3 Xp Dy S tﬁa So, 45 ti, 4 S(34) t(34)> U(39)» I/I/Z,S(Pl)'
S(zs)a Ti§: SZ,4> Ti, 45 S(34)9 T(34)> Ia Ja V39 Vj}: Vl/z,z(Pz);
. lO: ll: lza l35 l4'

The intersection table can be written down by the same methods as before; the prime
sections of ¥, , are easily seen to be the linear system |I'+A+130-+4¥;+V,|, and those
of ', are the linear system [8(X,+-9),) +9U,+ ¥ ,|; thus the virtual characteristic system
of W, is [7(X,+9,) —4U,—3¥; ,|. This enables us to find the prime sections of any sub-
variety of 'y, and its virtual intersection with W', asitsintersections with | 8(I'+ A) + 90 -+ 1|
and with |7(I'+A) —4©®—3%;|. This in turn enables us to find the order of each sub-
variety in turn, proceeding from lower dimensions to higher, and finally of W, itself,
each as the sum of the orders of the different terms in its prime section. The calculations
however are very laborious, though perfectly straightforward, and we shall not pursue
them here.

It is obvious that with sufficient pertinacity we could carry on in this way as far as was
worth while. All the equivalence and intersection problems on W, reduce to those on
W3 w, for n” < n, applied either to a ¥ locus which is a birational transform of W}, or
to a congruence of which W3, is a model. There are comparatively few general results
that leap to the eye; the most important are that the prime sections of I, , are the linear

system n .
THA+H(31-1) 04 3 4(3741-1) ¥,
i=3

and that the intersection matrix of the base T, A, ®, ¥, ..., W', for primals with the base
lgs -5 1, for curves is

....................................

This makes it easy to write down the prime sections of any birational image of Wi, when we
know the orders of the curve images of [, ...,7,, and also of a variety generated by lines
unisecant to such a birational image when we know the nature of the ruled surface images
of l,, ...,1,, and of the unisecant variety.

26. HOMOGENEOUS {-INVARIANTS OF A BRANCH IN S
We shall not carry the investigation of IW*, (r = 3) very far. The mode of procedure is
already clear, and we merely illustrate it by finding a few explicit formulae for » = 3, as
in more dimensions than this the notation becomes unmanageably complicated. We shall
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use a homogeneous co-ordinate system (u®, «*, u¥, u?), and again specify the generic branch
b .

y the equations Ut — U+ ug -+ ug 4 ug A .. (26°1)
which are exactly like (21-1) except that here of course a = w, x,y, z. (u¥, uf, u$, u), not all
zero, are the co-ordinates of the origin P, of the branch; and we obtain an affine co-ordinate
system with origin P, by writing

uroud Y oug z_uz ug (26:2)
uw uy’ Y=y uy’ wouy’

We have to define the quadratic, cubic, and quartic determinants
q(fju)?) = ”?‘%ﬁ —uf uf, Ay G) = €aﬂy3u§xujﬁ
(so that 9(11) 9y2)Gj) etc.); D:Sk(ijk) = €apys uf‘uj'ﬁu%>
E(j'(jkl) = eaﬁyau?l‘_;ﬁ ujup,

between which we note the identities

woﬂ'ngj )9253') = u%UDZl:(ijk)) (263)

waﬁng%)ﬁ% Yy = (u %U)ZEGX}W (26-4)

Now by substituting from (26-1) and ordinary division of the formal power series, we
obtain an expansion of the form (13-1) with coefficients a; = p¥, b; = p¥, ¢; = p7 expressible

as rational functions of the coefficients in (26-1); in fact, as in (21 3),

Py = 4/ (u)?,
1 = (_lh g +ul a6 | (),
15 = [t —uguy] gy —utut g5 + (ug)® g6}/ (ut)*, ) (26+5)
15 = {[— (uf)®uy + 2ug ufuy — (u})’] 9(60f’3)+” [(ut)? —upuy] ity
— () 2wt glt5) -+ (u)® g} (ut)®

where of course & = x, y, z only. Substituting these in the definitions of D
(26-3) we have

D 49 = Do/ (uf)?,

D a3 = (—u{ Dio1n+ug Diiors) [ (uf)*,

i) Eijp, and using

(26-6)
D = {[ (4 uguy] Do) — U uf Do+ (uf) Do}/ (uf >]
and similarly using (26-4)
E 95 = Edyas)/ (ug)?,
Eqgg = (uy E1o3)—uf Ef124) [ (18)°,
124 0 (26-7)

63-2
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516 P. Du VAL

It is at once clear that
u =uf, qP=ggf), Df =Dl E*=Efnys

are /-invariant tensors of ranks 0,1, 2,3, weights 0,1, 3, 6, and degrees 1,2, 3, 4, respec-
tively; the first three of these are the homogeneous co-ordinates of the origin Py, the tangent
line P,P,, and the osculating plane P P, P, of the branch; while E* = 0 is the condition for
the points PP, P,P, to be coplanar, i.e. for the origin to be a point of stationary osculation.
But substituting the values (26-5, 6,7) in the expression for any #-invariant of (13-1) as a
(p, D, E) form, we obtain a fraction whose denominator is a power of u*¥ = «¥, and whose
numerator is a form in the uf’s, ¢%”’s, D¥;1y’s, and E;)’s (¢ = #,7, z only) ; and the numer-
ators so arising are certain components of certain ¢-invariant homogeneous tensors; those
components namely in which every separate contravariant index, one out of every anti-
symmetric pair of contravariant indices, and no covariant index, is equal to w. Thus the
remaining principal #invariant G% of rank 3, and the five principal #-invariant tensors of
rank 4 found in §13, give us

Goc G;fk w(wer) wd I;X: wuwa)(wp) 8 J;k’%w(wa) (wp)
L ) L A ¢ ) L A AL O LA
Soc - S*w(wa) Tac B T;jl‘(wot) Uocﬂ B U*ww(wa)(wﬁ)

S T e U g

where
G¥en = (u3 g} — 2u§ 9(63)) Diorn +uG 467 D19

LoD — (g (uguf + 2utuf +uguf) 40 qah) — 2 (uuf +uiuf) (g5 a3+ o7 aah)
—uguf (4359038 — 5943 443+ 983 741)} Dor
+{(ufuf +uguf) gD 968 — Suud (g3B 468 + 433 441)} Dikiors)
+ugug g% 441 Diorar

T — (4(ugu —2uguf +usud) gy ol
- Bugud +utud) (D88 + g8 ) — sl (R 303 o
+ 48 94D)} Dorn DRy — (wgud +u5uf) 6363 Doy Diiors
+ 3 uf (gD 488 + 43 647) (4D 012 Do+ Doy Diior)

(¥8) o0 %* s %
Lo Fugug 443948 (Doro D01 — 2D 013D Fors)) -
(satisfying

ko f(yd 7]0 — % *acﬁ(yﬁ (90) 1 *OL(‘yb\ % (7]0
G*oc(nﬂ) G/\*ﬂ(yr?) G*ﬁ(y&) G/\*a(?}ﬁ) -+ G*ﬂ(ﬂﬁ) G/\* a(y&))

which seems to be the most extended version of (5-4) that we reach in the course of this

work).
_ ( (
S#elfn = (2ug ‘](lgf'))_ 3ug Q(gz}/))) Ef 05 Fu 09(01) ) E1249

T;k(aﬁ): (9235))1)%12) 24451 Dy(OlB)) E(%m)“9(01)Dy(012)E(=5124)>
o0 — -+ a5 ) DR i) ()
~uau'8(‘] l,q(gg§+q(”2)g(}7,§§~l-g 3 00)} Edbr23)
+ {3 (u§uf +ugug) ¢4Dah —uul (gD an B+ a3 atD)} Eb 24

+ufuf gy )9(01)E<0134)
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It is seen that G¥*#" is a f-invariant tensor of rank 3, weight 5, homogeneous degree 6,
and having 96 components, as each of a, § has the four valuesw, «, y, z, and the antisymmetric
pair (fy) has six values. Similarly the five #-invariant tensors of rank 4 have respective
weights 7, 10, 8, 11, 10, and degrees 9, 12, 7, 9, 10, and have respectively 840, 3360, 24, 24,
and 210 components. (The pairs of indices enclosed in brackets are antisymmetric, but
Db a0 Jofrd)ao) Ukebrd@0) are symmetric with respect to «, f, and also with respect
to the pairs (yd), (76).)

In four dimensions we shall get obviously a very similar set of z-invariant tensors in which,
however, the cubic determinants D* will have two covariant (or of course three contra-
variant) indices, and the quartic determinants £* will have one covariant index; also,
we shall have further ¢-invariants, all vanishing when the branch lies in S5, containing the
quintic determinants Flfyam = 6ays¢ UFuuu i,

starting with F* = F¥,,5,, of rank 4.

27. PARAMETRIZATION OF W3,

We can now of course substitute these values of the affine f-invariants in terms of the
homogeneous in the parametrization of W; ,. We obtain in the first instance fractions whose
denominators are powers of u¥; and multiplying throughout by (u*)3" we obtain a set of
monomials, isobaric and homogeneous, which are certain components of a set of {-invariant
tensors—those components namely in which each separate contravariant index, one of
each antisymmetric pair of contravariant indices, and no covariant index, is w. Adjoining
all the remaining components of these tensors, and taking the whole set of #invariants so
obtained as homogeneous co-ordinates in projective space of suitably high dimensions,
we obtain the generic point of W3 .

Thus for W, we have clearly

XelBy) = arqév), (27.1)

satisfying the linear relation
XaBy) |- XBye) - Xveh) — (),

Similarly from (14:1) we obtain in the first instance
X3 = quaD}/(uw)s,  Yebrd = quaguiqenged)(uv)s;

whence multiplying by (u®)® and adjoining all the remaining components of these two
tensors we obtain

Xgl ag o3 aa(By) — e %3 114 q(/fy)D:sk,
} (27-2)

Yelbryn@Bzyd sy (Bare) = ygo qlbryn qib2va) qUhs ys) glbare

as the parametrization of Wjf,. The vanishing of all co-ordinates X gives the locus ¥,
which is a birational model of W, ; while that of all co-ordinates ¥ gives the locus ¥,
which is a birational model of the so-called flag manifold, model of the aggregate of figures
in S, consisting of a point, a line through it, and a plane through the line. Given values of
u*, q¥#7 determine a line on W, and a point on ¥, and W5 , is generated by the co® planes
Wj. 1(PyP)) joining a point and line so corresponding. Thisisin fact easily seen to be precisely
Longo’s model of W3,.
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Similarly, on substituting in (14-6) the values of the various tensors found in the last
section, we find that the nine monomial tensorsin (14-6) become fractions with denominators
(u@)19, (uv)22, (uv)’5, (u)ls, (w9)l4, (wv)l?, (u)?0, (uww)?, (u¥)?; thus multiplying
throughout by (u*)?” and adjoining all the remaining components of the tensors as before

we obtain ch’l’.(..ocg(ﬁl'y[)...(ﬂg Y8, Aw) — yet |, yos q(/fm/l) q(ﬁs 75)])31c G;k/\(/w),

Xoeosfryn-(Baves Mw) — g | gesqbrvn | qlsraGHFam),
chl..,otm(ﬂl'yl)'"(ﬁ‘?')"l) — u .. ualzq(ﬂm) q(ﬂ474)D3k E*’
Yarasfryn-(Bry) — g greqbro, qlrroE*,

Zgigndbn) — um | wenq@DY ... DY,
Zgrsgulbryn-Bay) — yea | geo qPm q#MDEDF DY,
thlré;av(ﬂl By — g am b gl 77)D§<1D§k2’
Zgroeapryboyio — ya | geaqhrr) | qloroD¥,
ZdBryn-(frsys) — gagbrvn  qlher

as the parametrization of IW3¥,. The various ‘" loci on this can of course be parametrized
by applying a similar process to the parametrization of the corresponding ® loci on W} ,;
they can, however, be identified without this, the co-ordinate tensors which vanish on each
WV locus being those which arise by the substitution just described from those which vanish
on the corresponding ® locus.

In particular there are on W, four birational images of the flag manifold of §;. The
minimum model of this, parametrized by the single co-ordinate tensor u*q#»”D¥, has on
it three congruences of co® lines, say {{}, {m}, {n}, loci of images of ‘flags’ in which the line
and plane, the point and plane, and the point and line respectively are fixed. On the locus
Y, on Wi, the images of the lines {{} are quartic curves, those of the other two systerns are
lines, and it is the lines {#} that are joined by planes to the points of V3.

On W% the loci W', 55, Wiy Yes, and Wy 4 are given by the vanishing of all the
co-ordinates except

Xgl;g~as(ﬂ1y1)~-~(/i’5y5),/\(,W)’ YgreaBryne(fays)

Z g\cll'-'-‘-gt;s(ﬂy), Xglmoﬁ(ﬂl Y-(faye), M),

respectively, and are thus birational models of the flag manifold, on which the images of
the lines {{}, {m}, {n} are of orders 9, 6, 2; 12,4,1;13,1,4; 6,9, 1. Exactly as on I, 5 the loci
W, 3, Wis, Wy 5 and Wy 5 are generated each by cof lines joining corresponding points of
two of these four birational images of the same variety, and V', is generated by 008 planes
joining corresponding points of the first three. ;5 on the other hand is generated by co®
planes, each joining a line n of ¥ ; to the corresponding point of W3, which is itself a
birational image of W¥,, being given by the vanishing of all the co-ordinates except
ZHBryn-Brsyis), W W5 do not lend themselves to equally simple description; their equa-
tions are the vanishing of all co-ordinates Z and that of all co-ordinates Y, respectively.

The most immediately striking feature of these loci W5, is of course the absence of the
symmetry between the conditions 2, 2, which was so conspicuous a feature of W, corre-
sponding there to the duality transformation. This lack of symmetry in W§, (and a fortior:
in all Wk, r=3) reflects the fact that for » > 3 there is no duality transformation on

s
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w,

... Every branch in §, has of course a well-defined dual branch, but the sequence
Py...P, on the one does not determine the sequence P;...P, on the other, but only
Py ... Py, .y i.c. the duals of all branches through P, ... P, have no point common to all of
them beyond P,_,,,, as is easily seen by arguments analogous to those at the beginning of
§ 23. This is further underlined by the fact that conditions dual to each other in §; familiarly
do not generally involve the same number of points, e.g. not 2 and 2, but 2 and 3 are dual,
i.e. the dual of a cuspidal branch is one on which the first four points are coplanar.

It is by now obvious that the above methods suffice for the parametrization of W, for

all values of r and #.

Note 1. THE NUMBER OF ELEMENTS IN A BASE

Ifb, , ,is the number of elements in a base for varieties of 2 dimensions on W], (or W,),
since I, is a fibre space of S,_,’s over W, ,_, (and W}, similarly over W},_,), every such
h-dimensional variety either meets co” of these S,_,’s in points, co?~! of them in lines, ..., or

is generated by co#~7~! of them; so that
r—1
bh,r,n = % bh~z’, ry,n—1
i=

where of course we put b, , = 0 if £ is negative or greater than the dimension N of ] ,
(or W}k,). Hence defining

D) = 2 byl

h,v,n

M=

i

i=0

we sec that b (1) = (g ti) b (D).

Since moreover W]  is a single point, and W} is S,, we have for I ,

r—1

6ol = (S 1)

i=0
r—1 n r
and for W, b () = ( > ti) St

These formulae give all the base numbers of W, , and W},

NoTE 2. A SIMPLIFIED PARAMETRIZATION OF W, .

In the note (Du Val 1961) already several times referred to, W, ; was parametrized
rationally in termsof three independent parameters. Itisclear that this can be done for any
W, ,in terms of the parameters u,, ..., #, defined in § 4; but simpler expressions, at least for
the first few values of z, are obtained in terms of the parameters 4, ...,4, which we now
define recursively: A; = g, = b/a; and A, is obtained from A,_;, by the dilating substitu-
tion, preceded by the linear transformation (x,y) — (y, —x); i.e. by replacing, in each
t-invariant (a, D) form, g; by d;, and as before D; by A,

It 1s easily verified that

a’ D3 a’G3 D7J3

L=p bT@me 4Ty STangre v

and generally A, = ]'f[l Eg-,
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where E(, = a, Ey = D, and generally E, is the highest in weight of the principal #-in-
variant (a, D) forms of rank n, denoted in § 5 by (1, 2, ..., 2*7%,0) ; and the exponents p,, p;, . ..
(alternately negative and positive) are defined by p, = —1, p, = 3, and for n == 2

Pn T Pu—1"Py—g = 0,
b . 2t—1
that A .
SO a igopl 1 -t 52

No demonstrative use has been made of these parameters in this paper, partly because
a similarly simple set of algebraically independent parameters for W, , (r = 3) or for W

does not seem to be obviously available, but even more because their usefulness in sim-
plifying the geometry of I, , depends largely on the fact that:

If F is any principal f-invariant of rank » and of weight s, and s" = 5 x 272 is the weight
of E,, then a*—F/E,, which is obviously a rational function of (1,,...,4,), is in fact a
polynomial in (4,,...,4,). '

Of this theorem I have been unable to construct a proof, though it has been verified for
n < 5, and the outline of an inductive proof can be dimly discerned. Without it there seemed
to be little point in introducing these parameters.
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